机械臂的运动学是研究机械臂各连杆坐标系之间的运动关系,是对机械臂进行运动控制的基础。通过D-H 表示法建立机械臂的运动学数学模型,求得机械臂末端的运动学方程,利用指数积进行实验验证,使用 Matlab Robotics Toolbox 对该机械臂进行运动学仿真建模,并进行实例仿真。通过仿真结果,分析机械臂的运动情况,验证运动学算法的正确性。并采用蒙特卡洛法在 Matlab 环境中求出机械臂的工作空间点云图,为机械臂轨迹规划和控制的研究提供可靠的依据。
机械臂的运动学是研究机械臂各连杆坐标系之间的运动关系,是对机械臂进行运动控制的基础。通过D-H 表示法建立机械臂的运动学数学模型,求得机械臂末端的运动学方程,利用指数积进行实验验证,使用 Matlab Robotics Toolbox 对该机械臂进行运动学仿真建模,并进行实例仿真。通过仿真结果,分析机械臂的运动情况,验证运动学算法的正确性。并采用蒙特卡洛法在 Matlab 环境中求出机械臂的工作空间点云图,为机械臂轨迹规划和控制的研究提供可靠的依据。
D-H 表示法是由 、 、、 四个参数来描述连杆和相连连杆间的关系,其中连杆长度和连杆转角用于描述连杆本身,连杆偏距和关节用于描述相邻连杆间的连接关系。在相邻两个关节坐标系之间,通过以下两个旋转变换和两个平移变换可以建立这两个关节坐标系之间的关系:
(1)绕着 轴旋转,使得轴和轴平行;
(2)沿着轴平移 ,使得轴和轴共线;
(3)绕着 轴旋转,使得 轴和 轴平行;
(4)沿着轴平移,使得 轴和 轴共线。
依据改进 D-H 表示法建立机械臂的连杆坐标系,如图所示。
该机械臂6个关节都是转动关节,前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。和大多数工业机器人一样,后3个关节轴线交于一点,因此将该点作为手腕的参考点,也选作为连杆坐标系{4},{5}和{6}的原点。在改进D-H坐标系中,{0}和{1}一般重合,O1为轴1和轴2公法线在轴1上的交点,此时关节1和关节2在z方向上的偏置没有体现出来,对于整个机械臂各关节的相对运动来说并没有影响。先建立改进D-H坐标系如下:
表 5.1 机械臂的 D-H 参数表
连杆 i |
关节变量 |
扭转角 |
连杆长度mm |
连杆偏置mm |
变量范围 |
1 |
0h |
0° |
0 |
0 |
-160°~+160° |
2 |
02 |
-90° |
0 |
390 |
-225°~+45° |
3 |