(14)目标检测_SSD训练代码基于pytorch搭建代码

本文详细介绍了使用PyTorch搭建SSD目标检测模型的训练过程,包括主要参数设置,如预训练模型使用、训练策略等,并讲解了获取类名、计算anchor、权重迁移以及损失函数等关键函数的实现细节。
摘要由CSDN通过智能技术生成

1、主要参数

(1)anchor有两种,如果小目标

anchors_size = [21, 45, 99, 153, 207, 261, 315]

如果一般目标

anchors_size    = [30, 60, 111, 162, 213, 264, 315]

(2)采用预训练模型,使用adam

前50步冻结训练,50步开始不冻结训练

(二)从主干网络的预训练权重开始训练:
    #       Adam:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 6e-4,weight_decay = 0。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 6e-4,weight_decay = 0。(不冻结)

其中Freeze_Epoch为模型冻结训练的Freeze_Epoch,UnFreeze_Epoch为模型总共训练的epoch

(3)设置了pretrained=true&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值