3.4 Reprsentation of Transformations by Matrices

这一节通过Theorem 11Theorem 12 将linear transformation和矩阵建立了一对一的关联,此外Theorem 13说明linear transformation的composition与矩阵乘法也有天然的联系。Theorem 14则说明在linear operator的情况下,同一个linear transformation不同basis的矩阵存在相似(similar)的关系,且这个导致相似的矩阵实质上就是一组基在另一组基下的矩阵。

Exercises

1.Let T T T be the linear operator on C 2 C^2 C2 defined by T ( x 1 , x 2 ) = ( x 1 , 0 ) T(x_1,x_2)=(x_1,0) T(x1,x2)=(x1,0). Let B \mathfrak B B be the stantard ordered basis for C 2 C^2 C2 and let B ′ = { α 1 , α 2 } \mathfrak B'=\{\alpha_1,\alpha_2\} B={α1,α2} be the ordered basis defined by α 1 = ( 1 , i ) , α 2 = ( − i , 2 ) \alpha_1=(1,i),\alpha_2=(-i,2) α1=(1,i),α2=(i,2).
( a ) What is the matrix of T T T relative to the pair B , B ′ \mathfrak B,\mathfrak B' B,B?
( b ) What is the matrix of T T T relative to the pair B ′ , B \mathfrak B',\mathfrak B B,B?
( c ) What is the matrix of T T T in the ordered basis B ′ \mathfrak B' B?
( d ) What is the matrix of T T T in the ordered basis { α 2 , α 1 } \{\alpha_2,\alpha_1\} {α2,α1}?

Solution:
( a ) T ϵ 1 = 2 α 1 − i α 2 , T ϵ 2 = 0 α 1 + 0 α 2 Tϵ_1=2α_1-iα_2,Tϵ_2=0α_1+0α_2 Tϵ1=2α1iα2,Tϵ2=0α1+0α2, thus the matrix of T T T relative to the pair B , B ′ \mathfrak B,\mathfrak B' B,B is [ 2 0 − i 0 ] \begin{bmatrix}2&0\\-i&0\end{bmatrix} [2i00].
( b ) T α 1 = ϵ 1 , T α 2 = − i ϵ 1 Tα_1=ϵ_1,Tα_2=-iϵ_1 Tα1=ϵ1,Tα2=iϵ1, thus the matrix of T T T relative to the pair B ′ , B \mathfrak B',\mathfrak B B,B is [ 1 − i 0 0 ] \begin{bmatrix}1&-i\\0&0\end{bmatrix} [10i0].
( c ) T α 1 = 2 α 1 − i α 2 , T α 2 = − 2 i α 1 − α 2 Tα_1=2α_1-iα_2,Tα_2=-2iα_1-α_2 Tα1=2α1iα2,Tα2=2iα1α2, thus [ T ] B ′ = [ 2 − 2 i − i − 1 ] [T]_{\mathfrak B'}=\begin{bmatrix}2&-2i\\-i&-1\end{bmatrix} [T]B=[2i2i1].
( d ) T α 2 = − α 2 − 2 i α 1 , T α 1 = − i α 2 + 2 α 1 Tα_2=-α_2-2iα_1,Tα_1=-iα_2+2α_1 Tα2=α22iα1,Tα1=iα2+2α1, thus [ T ] { α 2 , α 1 } = [ − 1 − i − 2 i 2 ] [T]_{\{α_2,α_1\}}=\begin{bmatrix}-1&-i\\-2i&2\end{bmatrix} [T]{α2,α1}=[12ii2].

2.Let T T T be the linear transformation from R 3 R^3 R3 into R 2 R^2 R2 defined by
T ( x 1 , x 2 , x 3 ) = ( x 1 + x 2 , 2 x 3 − x 1 ) T(x_1,x_2,x_3)=(x_1+x_2,2x_3-x_1) T(x1,x2,x3)=(x1+x2,2x3x1)
( a ) If B \mathfrak B B is the standard ordered basis for R 3 R^3 R3 and B ′ \mathfrak B' B is the standard ordered basis for R 2 R^2 R2, what is the matrix of T T T relative to the pair B , B ′ \mathfrak B,\mathfrak B' B,B?
( b ) If B = { α 1 , α 2 , α 3 } \mathfrak B=\{\alpha_1,\alpha_2,\alpha_3\} B={α1,α2,α3} and B ′ = { β 1 , β 2 } \mathfrak B'=\{\beta_1,\beta_2\} B={β1,β2}, where
α 1 = ( 1 , 0 , − 1 ) , α 2 = ( 1 , 1 , 1 ) , α 3 = ( 1 , 0 , 0 ) , β 1 = ( 0 , 1 ) , β 2 = ( 1 , 0 ) \alpha_1=(1,0,-1),\quad\alpha_2=(1,1,1),\quad\alpha_3=(1,0,0),\\ \beta_1=(0,1),\quad\beta_2=(1,0) α1=(1,0,1),α2=(1,1,1),α3=(1,0,0),β1=(0,1),β2=(1,0)
what is the matrix of T T T relative to the pair B , B ′ \mathfrak B,\mathfrak B' B,B?

Solution:
( a ) We let ϵ 1 , ϵ 2 , ϵ 3 ϵ_1,ϵ_2,ϵ_3 ϵ1,ϵ2,ϵ3 be the standard ordered basis for R 3 R^3 R3 and ϵ 1 ′ , ϵ 2 ′ ϵ_1',ϵ_2' ϵ1,ϵ2 be the standard ordered basis for R 2 R^2 R2, then
T ϵ 1 = ( 1 , − 1 ) , T ϵ 2 = ( 1 , 0 ) , T ϵ 3 = ( 0 , 2 ) Tϵ_1=(1,-1),Tϵ_2=(1,0),Tϵ_3=(0,2) Tϵ1=(1,1),Tϵ2=(1,0),Tϵ3=(0,2)
thus the matrix of T T T relative to the pair B ′ , B \mathfrak B',\mathfrak B B,B is
A = [ 1 1 0 − 1 0 2 ] A=\begin{bmatrix}1&1&0\\-1&0&2\end{bmatrix} A=[111002]
( b ) A direct calculation shows
T α 1 = ( 1 , − 3 ) = − 3 β 1 + β 2 T α 2 = ( 2 , 1 ) = β 1 + 2 β 2 , T α 3 = ( 1 , − 1 ) = − β 1 + β 2 Tα_1=(1,-3)=-3β_1+β_2\quad Tα_2=(2,1)=β_1+2β_2,\quad Tα_3=(1,-1)=-β_1+β_2 Tα1=(1,3)=3β1+β2Tα2=(2,1)=β1+2β2,Tα3=(1,1)=β1+β2
thus the matrix of T T T relative to the pair B ′ , B \mathfrak B',\mathfrak B B,B is
A = [ − 3 1 − 1 1 2 1 ] A=\begin{bmatrix}-3&1&-1\\1&2&1\end{bmatrix} A=[311211]

3.Let T T T be a linear operator on F n F^n Fn, let A A A be the matrix of T T T in the standard ordered basis for F n F^n Fn, and let W W W be the subspace of F n F^n Fn spanned by the column vectors of A A A. What does W W W have to do with T T T?
Solution: By the condition given, if we write A = [ A 11 ⋯ A 1 n ⋮ ⋱ ⋮ A n 1 ⋯ A n n ] A=\begin{bmatrix}A_{11}&\cdots&A_{1n}\\\vdots&\ddots&\vdots\\A_{n1}&\cdots&A_{nn}\end{bmatrix} A=A11An1A1nAnn, then T ϵ j = ∑ i = 1 n A i j ϵ i = A j Tϵ_j=∑_{i=1}^nA_{ij} ϵ_i=A_j Tϵj=i=1nAijϵi=Aj, the j j j-th column vector of A A A, thus if W W W is spanned by A 1 , … , A n A_1,\dots,A_n A1,,An, it is easy to see W = range  T W=\text{range }T W=range T.

4.Let V V V be a two-dimensional vector space over the field F F F, and let B \mathfrak B B be an ordered basis for V V V. If T T T is a linear operator on V V V and
[ T ] B = [ a b c d ] [T]_{\mathfrak B}=\begin{bmatrix}a&b\\c&d\end{bmatrix} [T]B=[acbd]
prove that T 2 − ( a + d ) T + ( a d − b c ) I = 0 T^2-(a+d)T+(ad-bc)I=0 T2(a+d)T+(adbc)I=0.

Solution: We write B = { α 1 , α 2 } \mathfrak B=\{α_1,α_2\} B={α1,α2}, then for any α ∈ V α∈V αV, we have α = x 1 α 1 + x 2 α 2 , x 1 , x 2 ∈ F α=x_1 α_1+x_2 α_2,x_1,x_2∈F α=x1α1+x2α2,x1,x2F, notice that
[ T α 1 ] B = [ T ] B [ α 1 ] B = [ a b c d ] [ 1 0 ] = [ a c ] , [Tα_1 ]_{\mathfrak B}=[T]_{\mathfrak B} [α_1 ]_{\mathfrak B}=\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=\begin{bmatrix}a\\c\end{bmatrix}, [Tα1]B=[T]B[α1]B=[acbd][10]=[ac],
[ T α 2 ] B = [ T ] B [ α 2 ] B = [ a b c d ] [ 0 1 ] = [ b d ] , [Tα_2 ]_{\mathfrak B}=[T]_{\mathfrak B} [α_2 ]_{\mathfrak B}=\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix}=\begin{bmatrix}b\\d\end{bmatrix}, [Tα2]B=[T]B[α2]B=[acbd][01]=[bd],
[ T 2 α 1 ] B = [ T ] B [ T α 1 ] B = [ a b c d ] [ a c ] = [ a 2 + b c a c + c d ] , [T^2 α_1 ]_{\mathfrak B}=[T]_{\mathfrak B} [Tα_1 ]_{\mathfrak B}=\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}a\\c\end{bmatrix}=\begin{bmatrix}a^2+bc\\ac+cd\end{bmatrix}, [T2α1]B=[T]B[Tα1]B=[acbd][ac]=[a2+bcac+cd],
[ T 2 α 2 ] B = [ T ] B [ T α 2 ] B = [ a b c d ] [ b d ] = [ a b + b d b c + d 2 ] [T^2 α_2 ]_{\mathfrak B}=[T]_{\mathfrak B} [Tα_2 ]_{\mathfrak B}=\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}b\\d\end{bmatrix}=\begin{bmatrix}ab+bd\\bc+d^2\end{bmatrix} [T2α2]B=[T]B[Tα2]B=[acbd][bd]=[ab+bdbc+d2]
thus
( T 2 − ( a + d ) T + ( a d − b c ) I ) α 1 = T 2 α 1 − ( a + d ) T α 1 + ( a d − b c ) α 1 = ( a 2 + b c ) α 1 + ( a c + c d ) α 2 − ( a + d ) ( a α 1 + c α 2 ) + ( a d − b c ) α 1 = ( a 2 + b c − a 2 − a d + a d − b c ) α 1 + ( a c + c d − a c − c d ) α 2 = 0 \begin{aligned}&\quad(T^2-(a+d)T+(ad-bc)I) α_1\\&=T^2 α_1-(a+d)Tα_1+(ad-bc) α_1\\&=(a^2+bc) α_1+(ac+cd) α_2-(a+d)(aα_1+cα_2 )+(ad-bc) α_1\\&=(a^2+bc-a^2-ad+ad-bc) α_1+(ac+cd-ac-cd) α_2\\&=0\end{aligned} (T2(a+d)T+(adbc)I)α1=T2α1(a+d)Tα1+(adbc)α1=(a2+bc)α1+(ac+cd)α2(a+d)(aα1+cα2)+(adbc)α1=(a2+bca2ad+adbc)α1+(ac+cdaccd)α2=0
( T 2 − ( a + d ) T + ( a d − b c ) I ) α 2 = T 2 α 2 − ( a + d ) T α 2 + ( a d − b c ) α 2 = ( a b + b d ) α 1 + ( b c + d 2 ) α 2 − ( a + d ) ( b α 1 + d α 2 ) + ( a d − b c ) α 2 = ( a b + b d − a b − b d ) α 1 + ( b c + d 2 − a d − d 2 + a d − b c ) α 2 = 0 \begin{aligned}&\quad (T^2-(a+d)T+(ad-bc)I) α_2\\&=T^2 α_2-(a+d)Tα_2+(ad-bc) α_2\\&=(ab+bd) α_1+(bc+d^2 ) α_2-(a+d)(bα_1+dα_2 )+(ad-bc) α_2\\&=(ab+bd-ab-bd) α_1+(bc+d^2-ad-d^2+ad-bc) α_2\\&=0\end{aligned} (T2(a+d)T+(adbc)I)α2=T2α2(a+d)Tα2+(adbc)α2=(ab+bd)α1+(bc+d2)α2(a+d)(bα1+dα2)+(adbc)α2=(ab+bdabbd)α1+(bc+d2add2+adbc)α2=0
Now we have ( T 2 − ( a + d ) T + ( a d − b c ) I ) α 1 = ( T 2 − ( a + d ) T + ( a d − b c ) I ) α 2 = 0 (T^2-(a+d)T+(ad-bc)I) α_1=(T^2-(a+d)T+(ad-bc)I) α_2=0 (T2(a+d)T+(adbc)I)α1=(T2(a+d)T+(adbc)I)α2=0, and so
( T 2 − ( a + d ) T + ( a d − b c ) I ) α = ( T 2 − ( a + d ) T + ( a d − b c ) I ) ( x 1 α 1 + x 2 α 2 ) = x 1 ( T 2 − ( a + d ) T + ( a d − b c ) I ) α 1 + x 2 ( T 2 − ( a + d ) T + ( a d − b c ) I ) α 2 = 0 \begin{aligned}&\quad (T^2-(a+d)T+(ad-bc)I)α\\&=(T^2-(a+d)T+(ad-bc)I)(x_1 α_1+x_2 α_2 )\\&=x_1 (T^2-(a+d)T+(ad-bc)I) α_1+x_2 (T^2-(a+d)T+(ad-bc)I) α_2\\&=0\end{aligned} (T2(a+d)T+(adbc)I)α=(T2(a+d)T+(adbc)I)(x1α1+x2α2)=x1(T2(a+d)T+(adbc)I)α1+x2(T2(a+d)T+(adbc)I)α2=0

5.Let T T T be the linear operator on R 3 R^3 R3, the matrix of which in the standard ordered basis is
A = [ 1 2 1 0 1 1 − 1 3 4 ] A=\begin{bmatrix}1&2&1\\0&1&1\\-1&3&4\end{bmatrix} A=101213114
Find a basis for the range of T T T and a basis for the null space of T T T.

Solution: Using Exercise 3 we know the range of T T T is spanned by the column vectors of A A A, using elementary column operations we have
A = [ 1 2 1 0 1 1 − 1 3 4 ] → [ 1 0 0 0 1 1 − 1 5 5 ] → [ 1 0 0 0 1 0 − 1 5 0 ] A=\begin{bmatrix}1&2&1\\0&1&1\\-1&3&4\end{bmatrix}→\begin{bmatrix}1&0&0\\0&1&1\\-1&5&5\end{bmatrix}→\begin{bmatrix}1&0&0\\0&1&0\\-1&5&0\end{bmatrix} A=101213114101015015101015000
so a basis for the range of T T T is ( 1 , 0 , − 1 ) , ( 0 , 1 , 5 ) (1,0,-1),(0,1,5) (1,0,1),(0,1,5), notice that T ϵ 3 − T ϵ 1 = T ϵ 2 − 2 T ϵ 1 Tϵ_3-Tϵ_1=Tϵ_2-2Tϵ_1 Tϵ3Tϵ1=Tϵ22Tϵ1, thus
T ( ϵ 3 + ϵ 1 − ϵ 2 ) = T ( 1 , − 1 , 1 ) = 0 T(ϵ_3+ϵ_1-ϵ_2 )=T(1,-1,1)=0 T(ϵ3+ϵ1ϵ2)=T(1,1,1)=0
and the dimension of the null space of T T T is 1 1 1, so a basis for the null space of T T T is ( 1 , − 1 , 1 ) (1,-1,1) (1,1,1).

6.Let T T T be the linear operator on R 2 R^2 R2 defined by
T ( x 1 , x 2 ) = ( − x 2 , x 1 ) T(x_1,x_2)=(-x_2,x_1) T(x1,x2)=(x2,x1)
( a ) What is the matrix of T T T in the standard ordered basis for R 2 R^2 R2?
( b ) What is the matrix of T T T in the ordered basis B = { α 1 , α 2 } \mathfrak B=\{\alpha_1,\alpha_2\} B={α1,α2}, where α 1 = ( 1 , 2 ) \alpha_1=(1,2) α1=(1,2) and α 2 = ( 1 , − 1 ) \alpha_2=(1,-1) α2=(1,1)?
( c ) Prove that for every real number c c c the operator ( T − c I ) (T-cI) (TcI) is invertible.
( d ) Prove that if B \mathfrak B B is any ordered basis for R 2 R^2 R2 and [ T ] B = A [T]_{\mathfrak B}=A [T]B=A, then A 12 A 21 ≠ 0 A_{12}A_{21}\neq 0 A12A21=0.

Solution:
( a ) T ϵ 1 = ( 0 , 1 ) = ϵ 2 , T ϵ 2 = ( − 1 , 0 ) = − ϵ 1 Tϵ_1=(0,1)=ϵ_2,Tϵ_2=(-1,0)=-ϵ_1 Tϵ1=(0,1)=ϵ2,Tϵ2=(1,0)=ϵ1, so the matrix of T T T in the standard ordered basis for R 2 R^2 R2 is [ 0 − 1 1 0 ] \begin{bmatrix}0&-1\\1&0\end{bmatrix} [0110].
( b ) We have
T α 1 = ( − 2 , 1 ) = − 1 3 α 1 − 5 3 α 2 , T α 2 = ( 1 , 1 ) = 2 3 α 1 + 1 3 α 2 Tα_1=(-2,1)=-\frac{1}{3} α_1-\frac{5}{3} α_2,\quad Tα_2=(1,1)=\frac{2}{3}α_1+\frac{1}{3}α_2 Tα1=(2,1)=31α135α2,Tα2=(1,1)=32α1+31α2
thus
[ T ] B = [ − 1 / 3 2 / 3 − 5 / 3 1 / 3 ] [T]_{\mathfrak B}=\begin{bmatrix}-1/3&2/3\\-5/3&1/3\end{bmatrix} [T]B=[1/35/32/31/3]
( c ) The matrix of T − c I T-cI TcI in the standard ordered basis for R 2 R^2 R2 is [ − c − 1 1 − c ] \begin{bmatrix}-c&-1\\1&-c\end{bmatrix} [c11c], thus
( T − c I ) ϵ 1 = ( − c , 1 ) , ( T − c I ) ϵ 2 = ( − 1 , − c ) (T-cI) ϵ_1=(-c,1),\quad (T-cI) ϵ_2=(-1,-c) (TcI)ϵ1=(c,1),(TcI)ϵ2=(1,c)
since ( − c , 1 ) , ( − 1 , − c ) (-c,1),(-1,-c) (c,1),(1,c) are linearly independent for any c ∈ R c∈R cR, thus a basis of R 2 R^2 R2, this means T − c I T-cI TcI is invertible.
( d ) Let B ′ = { ϵ 1 , ϵ 2 } \mathfrak B'=\{ϵ_1,ϵ_2\} B={ϵ1,ϵ2}, then [ T ] B ′ = [ 0 − 1 1 0 ] [T]_{\mathfrak B' }=\begin{bmatrix}0&-1\\1&0\end{bmatrix} [T]B=[0110], given any B \mathfrak B B, we can find an invertible P P P s.t.
[ T ] B = A = P [ T ] B ′ P − 1 [T]_{\mathfrak B}=A=P[T]_{\mathfrak B'} P^{-1} [T]B=A=P[T]BP1
we can assume P = [ a b c d ] P=\begin{bmatrix}a&b\\c&d\end{bmatrix} P=[acbd], then P − 1 = 1 a d − b c [ d − b − c a ] P^{-1}=\frac{1}{ad-bc} \begin{bmatrix}d&-b\\-c&a\end{bmatrix} P1=adbc1[dcba], obviously a , b , c , d a,b,c,d a,b,c,d cannot be all zero.
A = 1 a d − b c [ a b c d ] [ 0 − 1 1 0 ] [ d − b − c a ] = 1 a d − b c [ b − a d − c ] [ d − b − c a ] = 1 a d − b c [ b d + a c − b 2 − a 2 d 2 + c 2 − b d − a c ] \begin{aligned}A&=\frac{1}{ad-bc}\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}0&-1\\1&0\end{bmatrix}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\\&=\frac{1}{ad-bc}\begin{bmatrix}b&-a\\d&-c\end{bmatrix}\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\\&=\frac{1}{ad-bc}\begin{bmatrix}bd+ac&-b^2-a^2\\d^2+c^2&-bd-ac\end{bmatrix}\end{aligned} A=adbc1[acbd][0110][dcba]=adbc1[bdac][dcba]=adbc1[bd+acd2+c2b2a2bdac]
thus A 12 A 21 = − ( a 2 + b 2 ) ( c 2 + d 2 ) a d − b c ≠ 0 A_{12} A_{21}=-\frac{(a^2+b^2 )(c^2+d^2)}{ad-bc}\neq 0 A12A21=adbc(a2+b2)(c2+d2)=0.

7.Let T T T be the linear operator on R 3 R^3 R3 defined by
T ( x 1 , x 2 , x 3 ) = ( 3 x 1 + x 3 , − 2 x 1 + x 2 , − x 1 + 2 x 2 + 4 x 3 ) T(x_1,x_2,x_3)=(3x_1+x_3,-2x_1+x_2,-x_1+2x_2+4x_3) T(x1,x2,x3)=(3x1+x3,2x1+x2,x1+2x2+4x3).
( a ) What is the matrix of T T T in the standard ordered basis for R 3 R^3 R3?
( b ) What is the matrix of T T T in the ordered basis { α 1 , α 2 , α 3 } \{\alpha_1,\alpha_2,\alpha_3\} {α1,α2,α3}, where α 1 = ( 1 , 0 , 1 ) , α 2 = ( − 1 , 2 , 1 ) , α 3 = ( 2 , 1 , 1 ) \alpha_1=(1,0,1),\alpha_2=(-1,2,1),\alpha_3=(2,1,1) α1=(1,0,1),α2=(1,2,1),α3=(2,1,1)?
( c ) Prove that T T T is invertible and give a rule for T − 1 T^{-1} T1 like the one which defines T T T.

Solution:
( a ) The matrix of T T T in the standard ordered basis for R 3 R^3 R3 is [ 3 0 1 − 2 1 0 − 1 2 4 ] \begin{bmatrix}3&0&1\\-2&1&0\\-1&2&4\end{bmatrix} 321012104.
(b) We form P P P where P j = [ α j ] { ϵ 1 , ϵ 2 , ϵ 3 } P_j=[α_j ]_{\{ϵ_1,ϵ_2,ϵ_3\}} Pj=[αj]{ϵ1,ϵ2,ϵ3}, it is easy to see P = [ 1 − 1 2 0 2 1 1 1 1 ] P=\begin{bmatrix}1&-1&2\\0&2&1\\1&1&1\end{bmatrix} P=101121211, and we perform
[ 1 − 1 2 1 0 0 0 2 1 0 1 0 1 1 1 0 0 1 ] → [ 1 − 1 2 1 0 0 0 2 1 0 1 0 0 2 − 1 − 1 0 1 ] → [ 1 − 1 2 1 0 0 0 2 1 0 1 0 0 0 − 2 − 1 − 1 1 ] → [ 1 − 1 0 0 − 1 1 0 2 0 − 1 / 2 1 / 2 1 / 2 0 0 1 1 / 2 1 / 2 − 1 / 2 ] → [ 1 0 0 − 1 / 4 − 3 / 4 5 / 4 0 1 0 − 1 / 4 1 / 4 1 / 4 0 0 1 1 / 2 1 / 2 − 1 / 2 ] \begin{aligned}\begin{bmatrix}1&-1&2&1&0&0\\0&2&1&0&1&0\\1&1&1&0&0&1\end{bmatrix}&→\begin{bmatrix}1&-1&2&1&0&0\\0&2&1&0&1&0\\0&2&-1&-1&0&1\end{bmatrix}\\&→\begin{bmatrix}1&-1&2&1&0&0\\0&2&1&0&1&0\\0&0&-2&-1&-1&1\end{bmatrix}\\&→\begin{bmatrix}1&-1&0&0&-1&1\\0&2&0&-1/2&1/2&1/2\\0&0&1&1/2&1/2&-1/2\end{bmatrix}\\&→\begin{bmatrix}1&0&0&-1/4&-3/4&5/4\\0&1&0&-1/4&1/4&1/4\\0&0&1&1/2&1/2&-1/2\end{bmatrix}\end{aligned} 10112121110001000110012221110101000110012021210101100110012000101/21/211/21/211/21/21000100011/41/41/23/41/41/25/41/41/2
thus
P − 1 = 1 / 4 [ − 1 − 3 5 − 1 1 1 2 2 − 2 ] P^{-1}=1/4 \begin{bmatrix}-1&-3&5\\-1&1&1\\2&2&-2\end{bmatrix} P1=1/4112312512
and then
[ T ] { α 1 , α 2 , α 3 } = P − 1 [ T ] { ϵ 1 , ϵ 2 , ϵ 3 } P = 1 4 [ − 1 − 3 5 − 1 1 1 2 2 − 2 ] [ 3 0 1 − 2 1 0 − 1 2 4 ] [ 1 − 1 2 0 2 1 1 1 1 ] = 1 4 [ − 2 7 19 − 6 3 3 4 − 2 − 6 ] [ 1 − 1 2 0 2 1 1 1 1 ] = 1 4 [ 17 35 22 − 3 15 − 6 − 2 − 14 0 ] \begin{aligned}[T]_{\{α_1,α_2,α_3\}} &=P^{-1} [T]_{\{ϵ_1,ϵ_2,ϵ_3\}} P\\&=\frac{1}{4} \begin{bmatrix}-1&-3&5\\-1&1&1\\2&2&-2\end{bmatrix}\begin{bmatrix}3&0&1\\-2&1&0\\-1&2&4\end{bmatrix}\begin{bmatrix}1&-1&2\\0&2&1\\1&1&1\end{bmatrix}\\&=\frac{1}{4} \begin{bmatrix}-2&7&19\\-6&3&3\\4&-2&-6\end{bmatrix}\begin{bmatrix}1&-1&2\\0&2&1\\1&1&1\end{bmatrix}\\&=\frac{1}{4}\begin{bmatrix}17&35&22\\-3&15&-6\\-2&-14&0\end{bmatrix}\end{aligned} [T]{α1,α2,α3}=P1[T]{ϵ1,ϵ2,ϵ3}P=41112312512321012104101121211=412647321936101121211=4117323515142260
( c ) It is enough to prove [ T ] { ϵ 1 , ϵ 2 , ϵ 3 } [T]_{\{ϵ_1,ϵ_2,ϵ_3\}} [T]{ϵ1,ϵ2,ϵ3} is invertible, this is true since
[ 3 0 1 − 2 1 0 − 1 2 4 ] − 1 = [ 4 / 9 2 / 9 − 1 / 9 8 / 9 13 / 9 − 2 / 9 − 1 / 3 − 2 / 3 1 / 3 ] \begin{bmatrix}3&0&1\\-2&1&0\\-1&2&4\end{bmatrix}^{-1}=\begin{bmatrix}4/9&2/9&-1/9\\8/9&13/9&-2/9\\-1/3&-2/3&1/3\end{bmatrix} 3210121041=4/98/91/32/913/92/31/92/91/3
since we know [ T − 1 ] { ϵ 1 , ϵ 2 , ϵ 3 } = ( [ T ] { ϵ 1 , ϵ 2 , ϵ 3 } ) − 1 [T^{-1}]_{\{ϵ_1,ϵ_2,ϵ_3\}}=([T]_{\{ϵ_1,ϵ_2,ϵ_3\}})^{-1} [T1]{ϵ1,ϵ2,ϵ3}=([T]{ϵ1,ϵ2,ϵ3})1, it’s able to describe
T − 1 ( x 1 , x 2 , x 3 ) = ( 4 9 x 1 + 2 9 x 2 − 1 9 x 3 , 8 9 x 1 + 13 9 x 2 − 2 9 x 3 , − 1 3 x 1 − 2 3 x 2 + 1 3 x 3 ) T^{-1} (x_1,x_2,x_3 )=\left(\frac{4}{9} x_1+\frac{2}{9} x_2-\frac{1}{9} x_3,\frac{8}{9} x_1+\frac{13}{9} x_2-\frac{2}{9} x_3,-\frac{1}{3} x_1-\frac{2}{3} x_2+\frac{1}{3} x_3\right) T1(x1,x2,x3)=(94x1+92x291x3,98x1+913x292x3,31x132x2+31x3)

8.Let θ \theta θ be a real number. Prove that the following two matrices are similar over the field of complex numbers:
[ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] , [ e i θ 0 0 e − i θ ] \begin{bmatrix}\cos{\theta}&-\sin{\theta}\\\sin{\theta}&\cos{\theta}\end{bmatrix},\quad \begin{bmatrix}e^{i{\theta}}&0\\0&e^{-i\theta}\end{bmatrix} [cosθsinθsinθcosθ],[eiθ00eiθ]
Solution: Let T T T be the linear operator on C 2 C^2 C2 which is represented by the first matrix in the standard ordered basis, then T ( 1 , 0 ) = ( cos ⁡ ⁡ θ , sin ⁡ ⁡ θ ) , T ( 0 , 1 ) = ( − sin ⁡ ⁡ θ , cos ⁡ ⁡ θ ) T(1,0)=(\cos⁡θ,\sin⁡θ), T(0,1)=(-\sin⁡θ,\cos⁡θ) T(1,0)=(cosθ,sinθ),T(0,1)=(sinθ,cosθ), let α 1 = ( i , 1 ) , α 2 = ( 1 , i ) α_1=(i,1),α_2=(1,i) α1=(i,1),α2=(1,i), then T α 1 = i ( cos ⁡ ⁡ θ , sin ⁡ ⁡ θ ) + ( − sin ⁡ ⁡ θ , cos ⁡ ⁡ θ ) = ( i cos ⁡ ⁡ θ − sin ⁡ ⁡ θ , i sin ⁡ ⁡ θ + cos ⁡ ⁡ θ ) = e i θ ( i , 1 ) = e i θ α 1 Tα_1=i(\cos⁡θ,\sin⁡θ )+(-\sin⁡θ,\cos⁡θ )=(i \cos⁡θ-\sin⁡θ,i \sin⁡θ+\cos⁡θ )=e^{iθ} (i,1)=e^{iθ} α_1 Tα1=i(cosθ,sinθ)+(sinθ,cosθ)=(icosθsinθ,isinθ+cosθ)=eiθ(i,1)=eiθα1
and similarly we can see T α 2 = e − i θ α 2 Tα_2=e^{-iθ} α_2 Tα2=eiθα2, it is easy to see { α 1 , α 2 } \{α_1,α_2 \} {α1,α2} are linearly independent, thus a basis of C 2 C^2 C2, since [ T ] { α 1 , α 2 } = [ e i θ 0 0 e − i θ ] [T]_{\{α_1,α_2\}} =\begin{bmatrix}e^{iθ}&0\\0&e^{-iθ} \end{bmatrix} [T]{α1,α2}=[eiθ00eiθ], the two matrices are similar, with P = [ i 1 1 i ] P=\begin{bmatrix}i&1\\1&i\end{bmatrix} P=[i11i] and
[ T ] { α 1 , α 2 } = P − 1 [ cos ⁡ ⁡ θ − sin ⁡ ⁡ θ sin ⁡ ⁡ θ cos ⁡ ⁡ θ ] P [T]_{\{α_1,α_2\}} =P^{-1} \begin{bmatrix}\cos⁡θ&-\sin⁡θ\\\sin⁡θ&\cos⁡θ \end{bmatrix}P [T]{α1,α2}=P1[cosθsinθsinθcosθ]P

9.Let V V V be a finite-dimensional vector space over the field F F F and let S S S and T T T be linear operators on V V V. We ask: When do there exist ordered bases B \mathfrak B B and B ′ \mathfrak B' B for V V V such that [ S ] B = [ T ] B ′ [S]_{\mathfrak B}=[T]_{\mathfrak B'} [S]B=[T]B? Prove that such bases exist if and only if there is an invertible linear operator U U U on V V V such that T = U S U − 1 T=USU^{-1} T=USU1.
Solution: If [ S ] B = [ T ] B ′ [S]_{\mathfrak B}=[T]_{\mathfrak B'} [S]B=[T]B, then let U U U be the linear operator that carries B {\mathfrak B} B onto B ′ {\mathfrak B'} B, i.e., if we let
B = { a 1 , … , a n } , B ′ = { b 1 , … , b n } {\mathfrak B}=\{a_1,\dots,a_n \},\quad {\mathfrak B'}=\{b_1,\dots,b_n \} B={a1,,an},B={b1,,bn}
and define U U U by U a i = b i , i = 1 , … , n Ua_i=b_i,i=1,\dots,n Uai=bi,i=1,,n. Then U U U is invertible since it carries a basis onto another basis, and U − 1 b i = a i , i = 1 , … , n U^{-1} b_i=a_i,i=1,\dots,n U1bi=ai,i=1,,n. If we denote [ S ] B = [ T ] B ′ = A = ( A i j ) [S]_{\mathfrak B}=[T]_{\mathfrak B'}=A=(A_{ij}) [S]B=[T]B=A=(Aij), then by definition we have S a j = ∑ i = 1 n A i j a i , T b j = ∑ i = 1 n A i j b i Sa_j=∑_{i=1}^nA_{ij} a_i ,Tb_j=∑_{i=1}^nA_{ij} b_i Saj=i=1nAijai,Tbj=i=1nAijbi, so
U S U − 1 ( b j ) = U S a j = U ( ∑ i = 1 n A i j a i ) = ∑ i = 1 n A i j U a i = ∑ i = 1 n A i j b i = T b j , j = 1 , … , n \begin{aligned}USU^{-1}(b_j )&=USa_j=U\left(∑_{i=1}^nA_{ij} a_i \right)\\&=∑_{i=1}^nA_{ij} Ua_i=∑_{i=1}^nA_{ij}b_i\\&=Tb_j,\quad j=1,\dots,n\end{aligned} USU1(bj)=USaj=U(i=1nAijai)=i=1nAijUai=i=1nAijbi=Tbj,j=1,,n
Since U S U − 1 USU^{-1} USU1 and T T T are equal on a basis of V V V, we have T = U S U − 1 T=USU^{-1} T=USU1.
Conversely, if T = U S U − 1 T=USU^{-1} T=USU1 for some invertible U U U, we let B = { a 1 , … , a n } B=\{a_1,\dots,a_n \} B={a1,,an} be an ordered basis for V V V, and B ′ = { U a 1 , … , U a n } \mathfrak B'=\{Ua_1,\dots,Ua_n \} B={Ua1,,Uan}, since U U U is invertible, B ′ \mathfrak B' B is a basis for V V V. Notice that if α ∈ V α∈V αV, then
α = k 1 a 1 + ⋯ + k n a n , k 1 , … , k n ∈ F α=k_1 a_1+\dots+k_n a_n,\quad k_1,\dots,k_n∈F α=k1a1++knan,k1,,knF
thus [ α ] B = [ k 1 ⋮ k n ] [α]_{\mathfrak B}=\begin{bmatrix}k_1\\\vdots\\k_n\end{bmatrix} [α]B=k1kn, and U α = k 1 U a 1 + ⋯ + k n U a n Uα=k_1 Ua_1+\dots+k_n Ua_n Uα=k1Ua1++knUan, so [ U α ] B ′ = [ k 1 ⋮ k n ] [Uα]_{\mathfrak B'}=\begin{bmatrix}k_1\\\vdots\\k_n\end{bmatrix} [Uα]B=k1kn, so we have [ α ] B = [ U α ] B ′ [α]_{\mathfrak B}=[Uα]_{\mathfrak B'} [α]B=[Uα]B, from this and the fact that T U = U S TU=US TU=US we can have
[ S ] B [ α ] B = [ S α ] B = [ U S α ] B ′ = [ T U α ] B ′ = [ T ] B ′ [ U α ] B ′ = [ T ] B ′ [ α ] B [S]_{\mathfrak B} [α]_{\mathfrak B}=[Sα]_{\mathfrak B}=[USα]_{\mathfrak B'}=[TUα]_{\mathfrak B'}=[T]_{\mathfrak B'} [Uα]_{\mathfrak B'}=[T]_{\mathfrak B'} [α]_{\mathfrak B} [S]B[α]B=[Sα]B=[USα]B=[TUα]B=[T]B[Uα]B=[T]B[α]B
and it must follow that [ S ] B = [ T ] B ′ [S]_{\mathfrak B}=[T]_{\mathfrak B'} [S]B=[T]B.
[Alternatively, one easier proof is using Theorem 14 and the consequence of Theorem 13, since in this case we have [ T ] B ′ = [ U − 1 ] B [ T ] B [ U ] B = [ U − 1 T U ] B = [ U − 1 ( U S U − 1 ) U ] B = [ S ] B [T]_{\mathfrak B'}=[U^{-1}]_{\mathfrak B} [T]_{\mathfrak B} [U]_{\mathfrak B}=[U^{-1} TU]_{\mathfrak B}=[U^{-1}(USU^{-1})U]_{\mathfrak B}=[S]_{\mathfrak B} [T]B=[U1]B[T]B[U]B=[U1TU]B=[U1(USU1)U]B=[S]B ].

10.We have seen that the linear operator T T T on R 2 R^2 R2 defined by T ( x 1 , x 2 ) = ( x 1 , 0 ) T(x_1,x_2)=(x_1,0) T(x1,x2)=(x1,0) is represented in the standard ordered basis by the matrix
A = [ 1 0 0 0 ] . A=\begin{bmatrix}1&0\\0&0\end{bmatrix}. A=[1000].
This operator satisfies T 2 = T T^2=T T2=T. Prove that if S S S is a linear operator on R 2 R^2 R2 such that S 2 = S S^2=S S2=S, then S = 0 S=0 S=0,or S = I S=I S=I, or there is an ordered basis B \mathfrak B B for R 2 R^2 R2 such that [ S ] B = A [S]_{\mathfrak B}=A [S]B=A (above).

Solution: If S = 0 S=0 S=0 or S = I S=I S=I, we obviously have S 2 = S S^2=S S2=S, now suppose S ≠ 0 , S ≠ I S\neq 0,S\neq I S=0,S=I, but S 2 = S S^2=S S2=S, then it is able to find α , β ∈ R 2 α,β∈R^2 α,βR2, s.t. S α ≠ 0 , S β ≠ β Sα\neq 0,Sβ\neq β Sα=0,Sβ=β, since S α ∈ range  S Sα∈\text{range }S Sαrange S, we have dim ⁡ ⁡ range  S ≥ 1 \dim⁡ \text{range }S≥1 dimrange S1, also since S ( S β − β ) = S 2 β − S β = S β − S β = 0 S(Sβ-β)=S^2 β-Sβ=Sβ-Sβ=0 S(Sββ)=S2βSβ=SβSβ=0, we know S β − β ∈ null  S Sβ-β∈\text{null }S Sββnull S, and dim ⁡ ⁡ null  S ≥ 1 \dim⁡ \text{null }S≥1 dimnull S1, as we discuss in R 2 R^2 R2, dim ⁡ range  S + dim ⁡ null  S = 2 \dim \text{range }S+\dim \text{null }S=2 dimrange S+dimnull S=2, thus dim ⁡ range  S = dim ⁡ null  S = 1 \dim \text{range }S=\dim \text{null }S=1 dimrange S=dimnull S=1. Now if we let a = S α , b = S β − β a=Sα,b=Sβ-β a=Sα,b=Sββ, and B = { a , b } {\mathfrak B}=\{a,b\} B={a,b}, then B {\mathfrak B} B is an ordered basis for R 2 R^2 R2 and [ S ] B = A [S]_{\mathfrak B}=A [S]B=A.

11.Let W W W be the space of all n × 1 n\times 1 n×1 column matrices over a field F F F. If A A A is an n × n n\times n n×n matrix over F F F, then A A A defines a linear operator L A L_A LA on W W W through left multiplicaition: L A ( X ) = A X L_A(X)=AX LA(X)=AX. Prove that every linear operator on W W W is left multiplication by some n × n n\times n n×n matrix, i.e., is L A L_A LA for some A A A.
Now suppose V V V is an n n n-dimensional vector space over the field F F F, and let B \mathfrak B B be an ordered basis for V V V. For each α \alpha α in V V V, define U α = [ α ] B U\alpha =[\alpha]_{\mathfrak B} Uα=[α]B. Prove that U U U is an isomorphism of V V V onto W W W. If T T T is a linear operator on V V V, then U T U − 1 UTU^{-1} UTU1 is a linear operator on W W W. Accordingly, U T U − 1 UTU^{-1} UTU1 is left multiplication by some n × n n\times n n×n matrix A A A. What is A A A?
Solution: If T T T is a linear operator on W W W, let B ′ = { ϵ 1 , … , ϵ n } \mathfrak B'=\{ϵ_1,\dots,ϵ_n \} B={ϵ1,,ϵn} be the standard basis on W W W, for each X = [ x 1 ⋮ x n ] X=\begin{bmatrix}x_1\\\vdots\\x_n \end{bmatrix} X=x1xn, we have X = ∑ j = 1 n x j ϵ j X=∑_{j=1}^nx_j ϵ_j X=j=1nxjϵj, and if we define A : = [ T ] B ′ A:=[T]_{\mathfrak B'} A:=[T]B, then T ( X ) = T ( ∑ j = 1 n x j ϵ j ) = ∑ j = 1 n x j T ϵ j = ∑ j = 1 n x j ∑ i = 1 n A i j ϵ i = ∑ i = 1 n ( ∑ j = 1 n A i j x j ) ϵ i = A X T(X)=T(∑_{j=1}^nx_j ϵ_j )=∑_{j=1}^nx_j Tϵ_j =∑_{j=1}^nx_j ∑_{i=1}^nA_{ij} ϵ_i =∑_{i=1}^n(∑_{j=1}^nA_{ij} x_j )ϵ_i =AX T(X)=T(j=1nxjϵj)=j=1nxjTϵj=j=1nxji=1nAijϵi=i=1n(j=1nAijxj)ϵi=AX, thus T = L A T=L_A T=LA.
For the second question, let B = { a 1 , … , a n } \mathfrak B=\{a_1,\dots,a_n \} B={a1,,an}, if [ α ] B = [ β ] B = [ x 1 ⋮ x n ] [α]_{\mathfrak B}=[β]_{\mathfrak B}=\begin{bmatrix}x_1\\\vdots \\x_n\end{bmatrix} [α]B=[β]B=x1xn, then α = β = ∑ j = 1 n x j a j α=β=∑_{j=1}^nx_j a_j α=β=j=1nxjaj , this shows ( U α = U β ) ⇒ ( α = β ) (Uα=Uβ)⇒(α=β) (Uα=Uβ)(α=β), so U U U is injective. Also for any X = [ x 1 ⋮ x n ] ∈ W X=\begin{bmatrix}x_1\\\vdots\\x_n \end{bmatrix}∈W X=x1xnW, define α = ∑ j = 1 n x j a j α=∑_{j=1}^nx_j a_j α=j=1nxjaj, then U α = X Uα=X Uα=X, thus U U U is surjective, combined we show U U U is an isomorphism.
If T T T is a linear operator on V V V, then let X = [ x 1 ⋮ x n ] , Y = [ y 1 ⋮ y n ] ∈ W X=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix},Y=\begin{bmatrix}y_1\\\vdots\\y_n \end{bmatrix}∈W X=x1xn,Y=y1ynW, by definition we have
U T U − 1 ( c X + Y ) = U T ( U − 1 ( c X + Y ) ) = U T ( ∑ j = 1 n ( c x j + y j ) a j ) = U ( T ( ∑ j = 1 n ( c x j + y j ) a j ) ) = U ( ∑ j = 1 n ( c x j + y j ) T a j ) = ∑ j = 1 n ( c x j + y j ) U T a j = c ∑ j = 1 n x j U T a j + ∑ j = 1 n y j U T a j = c ( U T ∑ j = 1 n x j a j ) + U T ( ∑ j = 1 n y j a j ) = c ( U T ( U − 1 ( X ) ) ) + ( U T ( U − 1 ( Y ) ) ) = c ( U T U − 1 ) ( X ) + ( U T U − 1 ) ( Y ) \begin{aligned}UTU^{-1} (cX+Y)&=UT(U^{-1} (cX+Y))\\&=UT\left(∑_{j=1}^n(cx_j+y_j)a_j \right)=U\left(T\Big(∑_{j=1}^n(cx_j+y_j)a_j \Big)\right)\\&=U\left(∑_{j=1}^n(cx_j+y_j)Ta_j \right)=∑_{j=1}^n(cx_j+y_j)UTa_j \\&=c∑_{j=1}^nx_j UTa_j +∑_{j=1}^ny_j UTa_j =c\left(UT∑_{j=1}^nx_j a_j \right)+UT\left(∑_{j=1}^ny_j a_j \right)\\&=c(UT(U^{-1}(X)))+(UT(U^{-1}(Y)))\\&=c(UTU^{-1})(X)+(UTU^{-1})(Y)\end{aligned} UTU1(cX+Y)=UT(U1(cX+Y))=UT(j=1n(cxj+yj)aj)=U(T(j=1n(cxj+yj)aj))=U(j=1n(cxj+yj)Taj)=j=1n(cxj+yj)UTaj=cj=1nxjUTaj+j=1nyjUTaj=c(UTj=1nxjaj)+UT(j=1nyjaj)=c(UT(U1(X)))+(UT(U1(Y)))=c(UTU1)(X)+(UTU1)(Y)
thus U T U − 1 UTU^{-1} UTU1 is a linear operator on W W W.
If T T T is a linear operator on V V V, then let C = [ T ] B C=[T]_{\mathfrak B} C=[T]B, i.e. T a j = ∑ j = 1 n C i j a i Ta_j=∑_{j=1}^nC_{ij} a_i Taj=j=1nCijai, in the first part we proved A = [ U T U − 1 ] B ′ A=[UTU^{-1}]_{\mathfrak B'} A=[UTU1]B, to compute A A A, we see that U T U − 1 ( ϵ j ) = U T a j = U ( ∑ j = 1 n C i j a i ) = ∑ j = 1 n C i j U a i = ∑ j = 1 n C i j ϵ j UTU^{-1}(ϵ_j )=UTa_j=U(∑_{j=1}^nC_{ij}a_i)=∑_{j=1}^nC_{ij}Ua_i =∑_{j=1}^nC_{ij}ϵ_j UTU1(ϵj)=UTaj=U(j=1nCijai)=j=1nCijUai=j=1nCijϵj , thus [ U T U − 1 ] B ′ = C = [ T ] B [UTU^{-1}]_{\mathfrak B'}=C=[T]_{\mathfrak B} [UTU1]B=C=[T]B, or A = [ T ] B A=[T]_{\mathfrak B} A=[T]B.

12.Let V V V be an n n n-dimensional vector space over the field F F F, and let B = { α 1 , … , α n } \mathfrak B=\{\alpha_1,\dots,\alpha_n\} B={α1,,αn} be an ordered basis for V V V.
( a ) According to Theorem 1, there is a unique linear operator T T T on V V V such that
T α j = α j + 1 , j = 1 , … , n − 1 , T α n = 0. T{\alpha}_j={\alpha}_{j+1},\qquad j=1,\dots,n-1,\qquad T{\alpha}_n=0. Tαj=αj+1,j=1,,n1,Tαn=0.
What is the matrix A A A of T T T in the ordered basis B \mathfrak B B?
( b ) Prove that T n = 0 T^n=0 Tn=0 but T n − 1 ≠ 0 T^{n-1}\neq 0 Tn1=0.
( c ) Let S S S be any linear operator on V V V such that S n = 0 S^n=0 Sn=0 but S n − 1 ≠ 0 S^{n-1}\neq 0 Sn1=0. Prove that there is an ordered basis B ′ \mathfrak B' B for V V V such that the matrix of S S S in the ordered basis B ′ \mathfrak B' B is the matrix A A A of part (a).
( d ) Prove that if M M M and N N N are n × n n\times n n×n matrices over F F F such that M n = N n = 0 M^n=N^n=0 Mn=Nn=0 but M n − 1 ≠ 0 ≠ N n − 1 M^{n-1}\neq 0\neq N^{n-1} Mn1=0=Nn1, then M M M and N N N are similar.

Solution:
( a ) A direct computation shows A = [ 0 0 … 0 1 0 ⋱ ⋱ 0 1 0 ] A=\begin{bmatrix}0&0&\dots&0\\1&0& & \\ &\ddots&\ddots& \\0& &1&0\end{bmatrix} A=01000100.
( b ) We have T k α n + 1 − k = 0 , k = 1 , … , n T^k α_{n+1-k}=0,k=1,\dots,n Tkαn+1k=0,k=1,,n, thus T n = 0 T^n=0 Tn=0, but T n − 1 α 1 = α n ≠ 0 T^{n-1}α_1=α_n\neq 0 Tn1α1=αn=0.
( c ) It is able to choose α α α s.t. S n − 1 α ≠ 0 S^{n-1}α\neq 0 Sn1α=0 but S n α = 0 S^n α=0 Snα=0, notice α ≠ 0 α\neq 0 α=0, and { α , S α , … , S n − 1 α } \{α,Sα,\dots,S^{n-1}α\} {α,Sα,,Sn1α} is linearly independent, for if we have
k 1 α + k 2 S α + ⋯ + k n S n − 1 α = 0 k_1 α+k_2 Sα+\dots+k_n S^{n-1} α=0 k1α+k2Sα++knSn1α=0
then S n − 1 ( k 1 α + k 2 S α + ⋯ + k n S n − 1 α ) = k 1 S n − 1 α = 0 S^{n-1}(k_1 α+k_2 Sα+\dots+k_n S^{n-1}α)=k_1 S^{n-1}α=0 Sn1(k1α+k2Sα++knSn1α)=k1Sn1α=0, thus k 1 = 0 k_1=0 k1=0, the above becomes
k 2 S α + ⋯ + k n S n − 1 α = 0 k_2 Sα+\dots+k_n S^{n-1}α=0 k2Sα++knSn1α=0
then S n − 2 ( k 2 S α + ⋯ + k n S n − 1 α ) = k 2 S n − 1 α = 0 S^{n-2}(k_2 Sα+\dots+k_n S^{n-1}α)=k_2 S^{n-1}α=0 Sn2(k2Sα++knSn1α)=k2Sn1α=0, thus k 2 = 0 k_2=0 k2=0, continue this step we eventually have k 1 = ⋯ = k n = 0 k_1=\dots=k_n=0 k1==kn=0. Thus we can define B ′ = { α , S α , … , S n − 1 α } \mathfrak B'=\{α,Sα,\dots,S^{n-1} α\} B={α,Sα,,Sn1α}, and [ S ] B ′ = A [S]_{\mathfrak B'}=A [S]B=A.
( d ) Let T T T and S S S be linear operators which satisfies [ T ] B = M , [ S ] B = N [T]_{\mathfrak B}=M,[S]_{\mathfrak B}=N [T]B=M,[S]B=N, in which B = { ϵ 1 , … , ϵ n } {\mathfrak B}=\{ϵ_1,\dots,ϵ_n \} B={ϵ1,,ϵn}. From ( c ) we can find two ordered basis B 1 {\mathfrak B}_1 B1 and B 2 {\mathfrak B}_2 B2 s.t. [ T ] B 1 = [ S ] B 2 = A [T]_{\mathfrak B_1}=[S]_{\mathfrak B_2}=A [T]B1=[S]B2=A, by Theorem 14, let P P P be the n × n n\times n n×n matrix with columns P j = [ ϵ j ] B 1 P_j=[ϵ_j ]_{\mathfrak B_1} Pj=[ϵj]B1, and Q Q Q be the n × n n\times n n×n matrix with columns Q j = [ ϵ j ] B 2 Q_j=[ϵ_j ]_{\mathfrak B_2} Qj=[ϵj]B2, then
M = [ T ] B = P − 1 A P , N = [ S ] B = Q − 1 A Q M=[T]_{\mathfrak B}=P^{-1} AP,\quad N=[S]_{\mathfrak B}=Q^{-1}AQ M=[T]B=P1AP,N=[S]B=Q1AQ
thus M = P − 1 Q N Q − 1 P = ( Q − 1 P ) − 1 N ( Q − 1 P ) M=P^{-1} QNQ^{-1}P=(Q^{-1}P)^{-1}N(Q^{-1}P) M=P1QNQ1P=(Q1P)1N(Q1P).

13.Let V V V and W W W be finite-dimensional vector spaces over the field F F F and let T T T be a linear transformation from V V V into W W W. If
B = { α 1 , … , α n }  and  B ′ = { β 1 , … , β m } \mathfrak B=\{\alpha_1,\dots,\alpha_n\}\text{ and }\mathfrak B'=\{\beta_1,\dots,\beta_m\} B={α1,,αn} and B={β1,,βm}
are ordered base for V V V and W W W, respectively, define the linear transformations E p , q E{p,q} Ep,q as in the proof of Theorem 5: E p , q ( α i ) = δ i q β p E^{p,q}(\alpha_i)=\delta_{iq}\beta_p Ep,q(αi)=δiqβp. Then the E p , q , 1 ≤ p ≤ m , 1 ≤ q ≤ n E{p,q},1\leq p\leq m,1\leq q\leq n Ep,q,1pm,1qn, form a basis for L ( V , W ) L(V,W) L(V,W), and so
T = ∑ p = 1 m ∑ q = 1 n A p q E p , q T=\sum_{p=1}^m\sum_{q=1}^nA_{pq}E^{p,q} T=p=1mq=1nApqEp,q
for certain scalars A p q A_{pq} Apq (the coordinates of T T T in this basis for L ( V , W ) L(V,W) L(V,W)). Show that the matrix A A A with entries A ( p , q ) = A p q A(p,q)=A_{pq} A(p,q)=Apq is precisely the matrix of T T T relative to the pair B , B ′ \mathfrak B,\mathfrak B' B,B.

Solution: T α j = ( ∑ p = 1 m ∑ q = 1 n A p q E p , q ) ( α j ) = ∑ p = 1 m ∑ q = 1 n A p q E p , q ( α j ) = ∑ p = 1 m ∑ q = 1 n A p q δ j q β p = ∑ p = 1 m A p j β p Tα_j=(∑_{p=1}^m∑_{q=1}^nA_{pq} E^{p,q})(α_j )=∑_{p=1}^m∑_{q=1}^nA_{pq} E^{p,q}(α_j)=∑_{p=1}^m∑_{q=1}^nA_{pq} δ_{jq} β_p=∑_{p=1}^mA_{pj} β_p Tαj=(p=1mq=1nApqEp,q)(αj)=p=1mq=1nApqEp,q(αj)=p=1mq=1nApqδjqβp=p=1mApjβp, and the conclusion follows.

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值