最优化学习笔记(一)——牛顿法(一维搜索方法)

一、一维搜索方法

讨论目标函数为一元单值函数 f:RR 时的最优化问题的迭代求解方法。

二、局部极小点的条件

n元实值函数 f 的一阶导数Df为:

Df[fx1,fx2,,fxn]

函数 f 的梯度是Df的转置: f=(Df)T , 顺便说一句,f 的二阶导数是黑塞矩阵。

下面只给出局部极小点位于约束集内部时的一阶必要条件。多元实值函数 f 在约束集Ω上一阶连续可微,约束集 Ω Rn 的子集。如果 x 是函数 f Ω上的局部极小点,且是 Ω 的内点,则有

f(x)=0

成立。

三、牛顿法

考虑一元单值函数在区间上求极小值的问题,此处假设函数连续二阶可微。下面构造一个经过点 (x(k),f(x(k))) 二次函数,该函数在 x(k) 的一阶和二阶导数分别为 f(x(k)) , f′′(x(k)) .那么,构造的函数如下:

q(x)=f(x(k))+f(x(k))(xx(k))+12f′′(x(k))(xx(k))2

则有
q(x(k))=f(x(k))(1)q(x(k))=f(x(k))(2)q′′(x(k))=f′′(x(k))(3)

q(x) 可以认为是 f(x) 的近似。因此,求函数 f 的极小值点近似于求解q的极小值点,函数 q 应该满足一阶必要条件:
0=q(x)=f(x(k))+f′′(x(k))(xx(k))

x=x(k+1) ,可得:
x(k+1)=x(k)f(x(k))f′′(x(k))

上式即为牛顿法的迭代公式,当 f′′(x)>0 时,对于区间内的 x 都成立,牛顿法正常,反之当f′′(x)<0时,牛顿法可能收敛到极大值点。

后续将牛顿法扩展到目标函数为 f:RnR 上。

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值