Lyapunov equation,sylvester equation and ricatti quation

Lyapunov equation,sylvester equation and ricatti quation


今天在学习《output regulation》西尔韦斯特方程有解的证明时,猛然想到这太像前面学习的李雅普诺夫方程了,一看,真的完全是一样的,证明的方式都差不多,几乎完全一样,后面根据其他博客的学习在拓展一种新的方程Riccati方程。

  1. Lyapunov方程
    A M + M B = C AM+MB=C AM+MB=C
    很重要的是关于其中 A ( M ) : = A M + M B \Alpha(M):=AM+MB A(M):=AM+MB特征值是矩阵A与矩阵B的特征值和的证明
    μ \mu μ 是矩阵A对应于特征值 λ i \lambda_i λi的右特征值,所以 A μ = λ i μ A\mu=\lambda_i\mu Aμ=λiμ;令 v v v为矩阵B对应于特征值 μ j \mu_j μj的左特征值,所以 v B = v μ j vB=v\mu_j vB=vμj,将矩阵 u v uv uv作为变量带入映射 A \Alpha A,我们可以得到
    Λ ( u v ) = A u v + u v B = λ i u v + u v μ j = ( λ i + μ j ) u v \Lambda(uv)=Auv+uvB=\lambda_iuv+uv\mu_j=(\lambda_i+\mu_j)uv Λ(uv)=Auv+uvB=λiuv+uvμj=(λi+μj)uv
    在线性系统中的应用:
    比如说,我们对于可控的线性系统可以通过状态反馈任意配置系统的特征值,在计算相应的feedback gain的时候,我们可以利用计算lyapunov equation的方式计算。

  2. Sylvester方程
    一般的Sylvester方程的形式: A ∈ R m × m , B ∈ R n × n A \in \mathbb{R}^{m\times m},B \in \mathbb{R}^{n\times n} ARm×m,BRn×n
    X A − B X = Q XA-BX=Q XABX=Q
    《output regulation》这本书中给出的证明是通过克罗内克积去证明的,其实最本质的东西没说出来,为什么特征值就是两个矩阵特征值的差。
    Sylvester equation方程有解的有唯一解的充分必要条件是 A A A, B B B 没有公共特征值。
    证明用到了克罗内克积与向量函数(vector-valued function)
    首先给出一个克罗内克积的性质:
    vec ( B X A ) (BXA) (BXA)= ( A T ⊗ B ) (A^T \otimes B) (ATB)vec ( X ) (X) (X)
    在线性系统输出调节中的应用:

  3. Ricatti方程
    Algebraic Riccati equation(代数黎卡提方程):
    A T P + P A − P B R − 1 B T P + Q = 0 A^{T} P+P A-P B R^{-1} B^{T} P+Q=0 ATP+PAPBR1BTP+Q=0
    一般的简化形式为:
    A T P + P A + I n − P B B T P = 0 A^TP+PA+I_n-PBB^TP=0 ATP+PA+InPBBTP=0
    此方程具有很多的解,不过我们想要求得其使得相关的LQR系统闭回路的系统稳定的稳定唯一解,只有当系统(A,B)是可控的时候,方程有唯一一个正定解。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值