图像分割评价标准

 

回答: 对于图像分割评价指标,常用的有类别像素准确率(CPA)、准确率(Accuracy)和交并比(IoU)。 类别像素准确率是指预测类别正确的像素数占类别总像素数的比例,也称为召回率。其计算方式可以使用以下Python代码: ```python def per_class_PA_Recall(hist): return np.diag(hist) / np.maximum(hist.sum(1), 1) ``` 准确率是指预测正确的样本数占总样本数的比例,也就是类别像素准确率的均值。计算方式如下: ```python def per_Accuracy(hist): return np.sum(np.diag(hist)) / np.maximum(np.sum(hist), 1) ``` 交并比表示的是模型对某一类别预测结果和真实值的交集与并集的比值。对于图像分割,可以计算预测掩码和真实掩码之间的交并比。可以使用以下代码实现: ```python def per_class_iu(hist): return np.diag(hist) / np.maximum((hist.sum(1) + hist.sum(0) - np.diag(hist)), 1) ``` 以上是常用的图像分割评价指标的计算方法。可以根据需要使用这些代码来评估模型在图像分割任务中的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [图像分割常见性能指标的计算方法(python)](https://blog.csdn.net/weixin_47057808/article/details/129702149)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值