合并处理
1.归一化分割时间长——>先SLIC预处理,减少像素点个数,然后再利用归一化分割对图像进行合并处理
SLIC算法缺点
1.每次迭代后的类簇内可能包含与聚类中心相似度很低的噪声点-->即,用类簇内所有像素更新聚类中心会影响聚类中心的准确性、稳定性和聚类效果
举例解释:类簇内部分像素点与聚类中心在颜色空间上并没有很强的相似度。即,像素点和种子点在颜色空间上有较大差异。也就是,颜色差太多,一般不是同一类。【Q:多姿多彩的物体怎么办?增加深度去衡量。普通颜色可能会存在模糊或者受光照灰尘影响而导致颜色特征不明显,加入深度后就可以准确的衡量聚类中心等..】
解决:滤波去除与聚类中心相似度不高的像素点
2.迭代过程中,与聚类中心相邻的像素会迅速稳定,边缘像素会被反复标记,即,每次迭代中度量所有像素与聚类中心的相似度会增加时间成本
解决:仅用不稳定像素进行迭代标记
3.边缘准确性和分割错误率与k值有很大关系。K越大边缘保留的越完整,但是过分割的现象也就越严重。
4.slic算法的最后一步,微小区域的紧邻合并没有考虑生成的超像素与最近邻超像素间的相似性,导致图像边界差
解决:增加限制条件,利用亮度相似性衡量最后是否合并【基于SLIC超像素的归一化分割方法的研究】
5.算法结束的条件是 计算出聚类中心以及剩余误差E until E<阈值时算法结束。这个阈值如何决定?【A:自适应决定】
6.SLIC预分割产生微小区域
解决:对图像先及进行预分割处理--双边平滑滤波器对图像进行保边去噪平滑处理
7.原算法最后生成的超像素可能会出现尺寸过小问题。原算法是通过增强连通性解决,主要思路是:新建一张标记表,表内元素均为-1,按照“Z”型走向(从左到右,从上到下顺序)将孤立点或尺寸过小的超像素重新分配给邻近的超像素,遍历过的孤立点或小尺寸超像素分配给相应的标签,直到所有点遍历完毕为止。————原算法采用,简单将小尺寸超像素分配给近邻超像素————没有充分考虑当前估计点或小尺寸超像素与它最近邻超像素间的相似性
解决:增加限制条件,利用超像素间亮度的相似性衡量是否进行合并