控制工程第二次学习笔记

拉普拉斯变换:

1.定义:设f(t)在t>=0时有定义,且(S=β+jω)在复平面S的某个邻域内收敛,则称其为f(t)的拉普拉斯变换,记作F(S)=L[f(t)]=。称F(S)是f(t)的象函数,f(t)是F(S)的象原函数。

注:L[u(t)] = 1/S = L[1] = L[sgn(t)] ,L[e^kt] = 1/(S-k)

2.存在条件:

若f(t)满足以下条件:

(1)在t >= 0的任一有限区间上连续或分段连续;

(2)当t -> ∞时,f(t)的增长速度不超过某一个指数函数,即存在M > 0,C >= 0,使得|f(t)| <= Me^Ct,0 <= t <= +∞。

则f(t)的拉普拉斯变换L[f(t)] = F(S)在Re(S) > C上一定存在,右端积分在Rs(S) >= C,大于C上绝对收敛且一致收敛,并且在Rs(S) > C的半平面内F(S)为解析函数。

注:L(coskt) = S/(S^2+k^2), L(sinkt) = k/(S^2+k^2)   (Re(S)>0)

        L(t^m) = m!/(S^m+1), m∈Z+,(Re(S)>0)

含有δ(t)时,若与f(t)为乘积,则拉普拉斯变换等价于t = 0时的函数。若与f(t)为加减,那就化成乘积。

3.动态系统的建模与分析中的拉普拉斯变换

优点:可大大的简化系统分析的难度

线性时不变系统的冲激响应与卷积

运算式:o{f(t)}  (Input) = x(t)  (Output)

且 o{f1(t) + f2(t)} = x1(t) + x2(t) , o{af(t)} = ax(t)

=>叠加原理 : o{a1f1(t) + a2f2(t)} = a1x1(t) + a2x2(t)

以及 o{f(t - τ)} = x(t - τ) 

与拉普拉斯变换相关的:

L^(-1)[F(S)H(S)] = L^(-1)[X(S)] => f(t)*h(t) = x(t)

(F(S)为输入的拉普拉斯,H(S)为传递函数,H(S)为输出的拉普拉斯, *号是卷积)

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值