本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:基于深度学习的轮胎缺陷检测系统
导 读
本文主要介绍一个基于深度学习轮胎缺陷检测系统方案。
背景介绍
由于全球制造业面临着在最短的时间内向市场推出多种最高质量产品的压力,因此所有职能向人工智能驱动的自动化的转变已成为必然。
在质量检测方面,人工智能驱动的计算机视觉系统已经能够简化生产流程,使产品符合公司制定的质量标准。这反过来又带来了更高效率、更低运营成本的优势,同时实现 24/7 生产和更快的决策。
全球轮胎制造商一直是质量保证等各个领域人工智能技术的早期采用者之一。人工智能的主要应用之一是使用基于深度学习的计算机视觉系统进行轮胎缺陷检测。由于轮胎制造过程中使用的原材料的性质,轮胎部件可能会受到金属或非金属杂质(例如钢丝、螺钉和塑料碎片)、气泡和重叠的污染。当轮胎有缺陷的车辆高速行驶时,这些缺陷会导致轮胎寿命缩短,甚至爆胎。
轮胎缺陷检测
要准确检测轮胎缺陷,需要解决的主要问题是:
-
模仿手动测试并集成到现有的制造和质量控制流程中