硅基流动完成新一轮亿元人民币融资

硅基流动(SiliconFlow)已于 2024 年底完成亿元人民币 Pre-A 轮融资。本轮融资由华创资本领投,普华资本跟投,老股东耀途资本继续超额跟投,华兴资本担任独家财务顾问。本轮融资之前,硅基流动已引入美团作为战略股东。

硅基流动创始人袁进辉表示:“感谢多方投资机构的信任与支持。此次融资将加速硅基流动的 AI 云基础设施升级与商业化拓展,我们将以高性价比、稳定可靠的产品服务开发者与企业客户,助力全球 AI 应用生态的落地与繁荣。”

硅基流动成立于 2023 年 8 月,致力于打造大模型时代的 AI 基础设施(AI Infra)平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。

近期,硅基流动的大模型云服务平台 SiliconCloud(cloud.siliconflow.cn)首发上线基于华为云昇腾云的满血版 DeepSeek-R1 & V3,率先走通在国产芯片部署 DeepSeek 模型的路径,大幅提升了基于国产芯片的大模型推理速度及实际算力利用率,显著降低模型推理时间与成本,获得持平全球高端 GPU 部署模型的效果。
在这里插入图片描述
SiliconCloud 在上线不到一年时间内获得了爆发式增长,平台总用户数超三百万,日均调用上千亿 Token。SiliconCloud 为开发者提供极速响应、价格亲民、品类齐全、体验丝滑的大模型 API,已上线包括满血版 DeepSeek-R1 & V3、Qwen、FLUX.1、CosyVoice 等在内的上百款主流模型,还提供模型训练、微调、托管到部署的全链路支持,满足开发者及企业客户的不同应用场景需求。SiliconCloud 背后基于硅基流动自研推理加速引擎套件(SiliconLLM & OneDiff),通过软硬件联合优化与加速,大幅降低推理部署成本,并为用户提供极致高性能体验。  
 
硅基流动团队还发布了 ComfyUI 云节点插件 BizyAir(github.com/siliconflow/BizyAir)。BizyAir 支持数十种模型,支持 ComfyUI 本地节点混跑,让 AI 开发者与创作者无需考虑显卡和环境限制,即可直接使用云计算资源完成生图任务。

在这里插入图片描述
在产业生态与商业化方面,硅基流动与华为、亚马逊云科技、英伟达等业内顶级云厂商、芯片厂商、大模型公司及应用公司建立合作伙伴关系,逐步构建起全球化生态合作优势。同时,硅基流动携手各方合作伙伴,已助力诸多标杆客户在大语言模型、文生图、视频生成等多个领域实现应用落地。针对企业客户,硅基流动推出专属实例、算力纳管、私有版 MaaS、基于华为昇腾 910 系列 NPU 的一体机四种服务模式,为其在大规模生产环境提供高效、稳定、可靠的模型服务。 
 
普华资本管理合伙人蒋纯表示:“我认识袁进辉博士多年,见证了他从优秀青年学者到产业先锋的豹变。硅基流动团队兼具顶尖技术基因与连续创业经验,持续以高效能 AI Infra 推动大模型普惠,最近又配合 DeepSeek 和华为昇腾云实现了大模型的全国产化部署突破。我们长期看好这支兼具理想主义与商业嗅觉的团队,他们正以‘技术深水区’的突破,成为大模型生态不可替代的筑基者。” 
 
耀途资本投资副总裁、硅基流动董事温廷灿表示:“作为硅基流动唯一从天使轮开始连投三轮的投资方,耀途资本深度参与到这家 AI Infra 创业公司的战略规划、产品定位、人才招募和融资拓展等环节,完整见证其从技术突破到商业闭环的跃迁历程,最终实现用户数量爆发式增长。凭借卓越的技术工程化能力和对市场需求的精准把握,创始团队已经建立起独特的技术商业化闭环——从技术研发到产品落地,从用户积累到口碑裂变,依托开发者社区的指数级口碑传播,形成技术壁垒与生态护城河的双向强化。‘优秀团队 × 技术纵深 × 产品化能力 × 生态势能’的乘数效应,正是我们持续加注的核心逻辑。基于此,耀途资本连投三轮,坚定看好其成为 AI 基础设施领域标杆企业,引领行业发展新潮流 。” 
 
本轮融资后,硅基流动将持续加强 AI Infra 技术创新,以更高性价比的产品服务让开发者实现“Token 自由”。同时,我们将继续携手算力、模型、应用等上下游合作伙伴,推动 AI 应用创新与产业生态建设,加速 AGI 技术普及。

### 实现多轮对话机制的关键要素 为了在流媒体平台上实现高效的多轮对话机制,需考虑以下几个方面: #### 1. 路由分发与请求处理 通过`AiChatController`类可以提供GET和POST两种接口来接收用户的输入。对于多轮对话而言,服务器端需要能够区分不同的会话,并保持上下文的一致性[^1]。 ```java @PostMapping("/chat") public ResponseEntity<String> handlePostRequest(@RequestBody ChatMessage message){ // 处理 POST 请求逻辑 } @GetMapping("/chat") public ResponseEntity<String> handleGetRequest(@RequestParam String query){ // 处理 GET 请求逻辑 } ``` #### 2. 流式响应机制的应用 采用流式响应机制可以在每次接收到新消息时立即返回部分结果给客户端,而不是等到整个回复构建完成才发送出去。这种方式不仅提高了用户体验,还增强了系统的实时性和互动感[^4]。 ```javascript // 客户端 JavaScript 示例 fetch('/chat', { method: 'POST', body: JSON.stringify({message: user_input}), }).then(response => response.text()).then(data => console.log(data)); ``` #### 3. 上下文管理与状态跟踪 有效的多轮对话依赖于良好的上下文管理和状态追踪能力。这通常涉及到保存之前的聊天历史以及当前对话的状态信息,以便后续的消息可以根据之前的内容做出合理的回应。 ```python class ConversationContext: def __init__(self, session_id): self.session_id = session_id self.history = [] def add_message(self, role, content): self.history.append({"role": role, "content": content}) def get_context(self): return "\n".join([f"{msg['role']}: {msg['content']}" for msg in self.history]) ``` #### 4. 数据持久化方案的选择 考虑到长时间运行的对话可能跨越多个HTTP请求周期,在设计上还需要解决数据存储的问题。可以选择内存缓存(如Redis)、数据库表等方式来进行临时或长期的数据保留操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值