1.函数
1.1 定义
函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作
其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。函数的两要素是指函数的定义域和值域。定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。
确定定义域和值域的方法
-
定义域:
-
代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。
-
图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。
-
-
值域:
-
代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。
-
图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。
-
常见函数类型
-
线性函数:
-
多项式函数:
,其中 ai是常数。
-
指数函数:
,其中 a>0 且 a≠1。
-
对数函数:
,其中 a>0 且 a≠1。
-
三角函数:如正弦函数 f(x)=sin(x),余弦函数 f(x)=cos(x),正切函数 f(x)=tan(x)等。
-
反三角函数:如反正弦函数 f(x)=arcsin(x),反余弦函数 f(x)=arccos(x),反正切函数 f(x)=arctan(x)等。
-
符号函数:
1.2函数的特性
1.2.1 有界性
上界:存在一个实数k1,使得
下界:存在一个实数k2,使得
注:特殊符号说明:
有界:
一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:
其中:
-
M 称为函数的上界。
-
m 称为函数的下界。
一个函数有界的充要条件:既有上界,又有下界。
分类
根据函数的有界性,可以分为以下几种情况:
-
有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。
-
无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。
1.2.2 单调性
定义
一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:
-
单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。
-
严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。
-
单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。
-
严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。
1.2.3 奇偶性
定义
一个函数 f(x) 在其定义域 D 上称为:
-
偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
-
奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
1.2.4 周期性
定义
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
1.3 反函数
定义
给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作
换句话说,反函数满足以下两个条件:
-
对于 X 中的每一个x,有
-
对于 Y 中的每一个 y,有
注意:原函数和反函数是关于y=x对称的。
存在条件
一个函数 f 存在反函数的充分必要条件是 f 是双射(即一一对应)。具体来说:
-
一一对应:对于 X 中的任意两个不同的元素 x1 和 x2,都有 f(x1)≠f(x2)。
-
满射:对于 Y 中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y。
2.极限
2.1 数列极限
定义
一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:
换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:
如果数列不收敛于任何有限值,则称该数列为发散的。
理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。
极限的性质
-
唯一性:如果数列 {an}收敛,则其极限是唯一的。
-
有界性:如果数列 {an}收敛,则它是有界的。
-
保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
-
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定
-
直接法:
-
通过分析数列的通项公式,直接计算其极限。
-
例如,数列
,计算其极限:
-
-
夹逼定理:
-
如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
,则
-
2.2 函数的极限
定义
设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有
则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作
性质
-
唯一性:如果极限存在,那么它是唯一的。
-
局部有界性:如果
,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
-
局部保号性:如果
且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。
2.3 无穷大与无穷小
-
无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
无穷大分为正无穷大和负无穷大。
无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
-
无穷小:如果
,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。
运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
3.高阶无穷小
设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。
如果
则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。
如:
x^2比三 x收敛速度快,则x^2是3x的高阶无穷小,记作
4.低价无穷小
设 α 和 β 是两个无穷小量。
如果
则称 α 是 β 的低阶无穷小。
5.同届无穷小
设 α 和 β 是两个无穷小量。
如果
,则称 α 和 β 是同阶无穷小。
6.等价无穷小
7.k阶无穷小
2.4 无穷大极限
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
具体分类:
-
当 x→+∞ 时的极限:
-
如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
-
-
当 x→−∞时的极限:
-
如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
-
2.5 极限存在准则
2.5.1 单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
1.取对数:
2.求极限:
3.洛必达法则:
2.5.2 夹逼定理
3.函数的连续性
3.1 连续性
性质:
-
局部性质:
-
如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。
-
-
全局性质:
-
如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。
-
如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。
-
如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f(c)=0(零点定理,后边会讲)。
-
3.2 不连续点
定义
3.3 闭区间连续函数性质
零点定理:(后边会用)
设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。
介值定理:(后边会用)
设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min(f(a),f(b))<k<max(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
-
零点定理可以看作是介值定理在 k=0时的特例。
-
如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。