人工智能的高数基础1 函数与极限

1.函数

1.1 定义

函数f 是从一个集合 D(称为定义域,D包含于实数集R)到另一个集合 Y(称为值域)的映射。对于定义域中的每一个元素 x,函数f都指定了一个唯一的元素 y 在值域中,记作

其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。函数的两要素是指函数的定义域和值域。定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有 xx 值的集合。值域是函数中所有可能的输出值的集合。换句话说,值域是函数 f(x)f(x) 在定义域内所有可能的 yy 值的集合。

确定定义域和值域的方法

  1. 定义域

    • 代数方法:通过分析函数的表达式,确定哪些 xx 值使得函数有意义。例如,分母不能为零,对数函数的输入必须为正数,平方根的输入必须为非负数等。

    • 图形方法:通过绘制函数的图形,观察 x 轴上的范围,确定定义域。

  2. 值域

    • 代数方法:通过分析函数的表达式,确定 f(x) 的取值范围。例如,平方函数的结果总是非负的,正弦函数的结果在 −1 和 1 之间。

    • 图形方法:通过绘制函数的图形,观察 y 轴上的范围,确定值域。

常见函数类型

  1. 线性函数:

  2. 多项式函数:

    ,其中 ai是常数。

  3. 指数函数:

    ,其中 a>0 且 a≠1。

  4. 对数函数:

    ,其中 a>0 且 a≠1。

  5. 三角函数:如正弦函数 f(x)=sin⁡(x),余弦函数 f(x)=cos⁡(x),正切函数 f(x)=tan⁡(x)等。

  6. 反三角函数:如反正弦函数 f(x)=arcsin⁡(x),反余弦函数 f(x)=arccos⁡(x),反正切函数 f(x)=arctan⁡(x)等。

  7. 符号函数:

                                                                sgn(x)=\begin{cases}1 & x>0\\0 & x=0 \\ -1 & x<0\end{cases}

1.2函数的特性

1.2.1 有界性

上界:存在一个实数k1,使得

                                                        \exists k_{1},f(x) \leq k

下界:存在一个实数k2,使得

                                ​​​​​​​        ​​​​​​​        ​​​​​​​        \exists k_{2},f(x) \geq k

注:特殊符号说明:

有界:

一个函数 f(x) 在其定义域 D 上称为有界的,如果存在两个实数 M 和 m,使得对于定义域中的任意x,都有:

其中:

  • M 称为函数的上界。

  • m 称为函数的下界。

一个函数有界的充要条件:既有上界,又有下界。

分类

根据函数的有界性,可以分为以下几种情况:

  1. 有界函数:如果函数 f(x) 在其定义域 D 上既有上界又有下界,则称 f(x) 是有界函数。

  2. 无界函数:如果函数 f(x) 在其定义域 D 上没有上界或没有下界,则称 f(x) 是无界函数。

1.2.2 单调性

定义

一个函数 f(x) 在其定义域 D 上称为单调的,如果对于定义域中的任意 x1 和 x2,当 x1<x2 时,有:

  • 单调递增:如果 f(x1)≤f(x2),则函数 f 是单调递增的。

  • 严格单调递增:如果 f(x1)<f(x2),则函数 f 是严格单调递增的。

  • 单调递减:如果 f(x1)≥f(x2),则函数 f 是单调递减的。

  • 严格单调递减:如果 f(x1)>f(x2),则函数 f 是严格单调递减的。

1.2.3 奇偶性

定义

一个函数 f(x) 在其定义域 D 上称为:

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。

  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。

1.2.4 周期性

定义

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:

其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

1.3 反函数

定义

给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作

换句话说,反函数满足以下两个条件:

  1. 对于 X 中的每一个x,有

  2. 对于 Y 中的每一个 y,有

注意:原函数和反函数是关于y=x对称的。

存在条件

一个函数 f 存在反函数的充分必要条件是 f 是双射(即一一对应)。具体来说:

  1. 一一对应:对于 X 中的任意两个不同的元素 x1 和 x2,都有 f(x1)≠f(x2)。

  2. 满射:对于 Y 中的每一个元素 y,都存在 X 中的一个元素 x,使得 f(x)=y。

2.极限

2.1 数列极限

定义

一个数列 {an} 的极限是 L,如果对于任意给定的正数 ϵ,总存在一个正整数 N,使得对于所有 n>N,都有:

换句话说,当 n 足够大时,数列的项 an可以无限接近L。此时,我们称数列 {an} 收敛于 L,记作:

如果数列不收敛于任何有限值,则称该数列为发散的。

理解:对于任意小的区间 ϵ,对于某个正整数N,使N后边的所有项n,∣an−L∣落在ϵ的这个区间内。

极限的性质

  1. 唯一性:如果数列 {an}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {an}收敛,则它是有界的。

  3. 保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

极限的判定

  1. 直接法

    • 通过分析数列的通项公式,直接计算其极限。

    • 例如,数列

      ,计算其极限:

  2. 夹逼定理

    • 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且

      ,则

2.2 函数的极限

定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义(在a处可以没有定义)。如果对于任意给定的正数 ϵ(无论它多么小),总存在正数 δ,使得当 0<∣x−a∣<δ 时,有

则称 L 为函数 f(x)当 x 趋近于 a 时的极限,记作

性质

  1. 唯一性:如果极限存在,那么它是唯一的。

  2. 局部有界性:如果

    ,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即

  3. 局部保号性:如果

    且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。

2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作

    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

    无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果

    ,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

        3.高阶无穷小

​​​​​​​        ​​​​​​​设 α和 β 是两个无穷小量(即当 x→a时, α→0且 β→0)。

        如果

        则称 α是 β的高阶无穷小,记作 α=o(β)。即α的收敛速度比 β快。

        如:

       x^2比三 x收敛速度快,则x^2是3x的高阶无穷小,记作

        4.低价无穷小

        设 α 和 β 是两个无穷小量。

        如果

        则称 α 是 β 的低阶无穷小。  

        5.同届无穷小​​​​​​​

        设 α 和 β 是两个无穷小量。

        如果

        ,则称 α 和 β 是同阶无穷小。

        6.等价无穷小

        

        7.k阶无穷小

        

​​​​​​​

2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

具体分类:

  1. 当 x→+∞ 时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作

  2. 当 x→−∞时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作

2.5 极限存在准则

2.5.1 单调有界准则

如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。

1.取对数:

2.求极限:

3.洛必达法则: 

2.5.2 夹逼定理

3.函数的连续性

3.1 连续性

 

性质

  • 局部性质

    • 如果函数 f(x) 在点 x=a 处连续,则 f(x)在 x=a的某个邻域内有界。

  • 全局性质

    • 如果函数 f(x) 在区间 [a,b]上连续,则 f(x)在该区间上有界。

    • 如果函数 f(x) 在区间 [a,b] 上连续,则 f(x) 在该区间上达到最大值和最小值。

    • 如果函数 f(x)在区间 [a,b]上连续,并且 f(a)和 f(b)异号,则存在 c∈(a,b)使得 f(c)=0(零点定理,后边会讲)。

3.2 不连续点

 定义

3.3 闭区间连续函数性质

零点定理:(后边会用)

设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。

介值定理:(后边会用)

设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min⁡(f(a),f(b))<k<max⁡(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。

零点定理与介值定理的关系

零点定理是介值定理的特例:

  • 零点定理可以看作是介值定理在 k=0时的特例。

  • 如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值