点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
自动驾驶技术的核心挑战在于如何让车辆在复杂、动态的交通场景中做出安全、高效的决策与规划。近年来,随着扩散模型(Diffusion Model)、大语言模型(LLM)和深度强化学习(DRL)等技术的快速发展,研究者们提出了诸多创新方法,从多模态感知到长尾场景泛化,从动态变道策略到可解释性规划,不断推动自动驾驶系统的智能化边界。本文精选了近年来18项代表性研究,涵盖扩散规划、强化学习决策、场景生成与测试、模仿学习优化等方向,试图为读者勾勒一幅自动驾驶规划与决策技术演进的立体图景。本文内容均出自『自动驾驶之心知识星球』,欢迎加入交流,这里已经汇聚了近4000名自动驾驶从业人员,每日分享前沿技术、行业动态、岗位招聘、大佬直播等一手资料!
1、 题目:Diffusion-Based Planning for Autonomous Driving with Flexible Guidance
链接:https://t.zsxq.com/JtUeU
简介:Diffusion Planner:基于扩散的柔性引导自动驾驶规划
时间:2025-01-28T23:52:12.534+0800
2、 题目:Evaluating Scenario-based Decision-making for Interactive Autonomous Driving Using Rational Criteria: A Survey
链接:https://t.zsxq.com/YBdrp
简介:全面综述DRL算法在典型自动驾驶场景中的应用,概括了道路特征及其最新进展
时间:2025-01-06T23:04:15.661+0800
3、 题目:Exploring Critical Testing Scenarios for Decision-Making Policies: An LLM Approach
链接:https://t.zsxq.com/VidUm
简介:探索决策策略的关键测试场景:一种LLM方法
时间:2024-12-10T22:36:42.652+0800
4、 题目:Why Studying Cut-ins? Comparing Cut-ins and Other Lane Changes Based on Naturalistic Driving Data
链接:https://t.zsxq.com/QgaGi
简介:基于自然驾驶数据的正常变道和cut-in的比较研究
时间:2024-02-16T21:47:39.587+0800
5、 题目:Reinforcement Learning for Freeway Lane-Change Regulation via Connected Vehicles
链接:https://t.zsxq.com/yxicN
简介:更优的变道策略:一种基于多智能体强化学习(MARL)的动态变道调控设计
时间:2024-12-08T21:25:02.106+0800
6、 题目:LHPF: Look back the History and Plan for the Future in Autonomous Driving
链接:https://t.zsxq.com/iwT0V
简介:LHPF:一种集成历史规划信息的模仿学习规划器
时间:2024-11-27T23:41:12.178+0800
7、 题目:Explanation for Trajectory Planning using Multi-modal Large Language Model for Autonomous Driving
链接:https://t.zsxq.com/LL5gu
简介:基于多模态大语言模型的自动驾驶轨迹规划解释
时间:2024-11-18T22:48:03.082+0800
8、 题目:SwapTransformer: highway overtaking tactical planner model via imitation learning on OSHA dataset
链接:https://t.zsxq.com/vHUfq
简介:SwapTransformer:基于OSHA数据集的模仿学习高速公路超车策略规划模型
时间:2024-01-04T21:09:06.440+0800
9、 题目:EMPERROR: A Flexible Generative Perception Error Model for Probing Self-Driving Planners
链接:https://t.zsxq.com/j5xAt
简介:EMPERROR:一种基于Transformer的生成性PEM,并将其应用于压力测试模仿学习(IL)基础的规划器
时间:2024-11-13T23:10:25.697+0800
10、 题目:DP and QP Based Decision-making and Planning for Autonomous Vehicle
链接:https://t.zsxq.com/udls3
简介:基于DP和QP的自动驾驶汽车决策与规划
时间:2024-11-12T23:03:53.713+0800
11、 题目:Maneuver Decision-Making with Trajectory Streams Prediction for Autonomous Vehicles
链接:https://t.zsxq.com/REYGb
简介:FFStreams++:用于不同动作(如无保护左转、超车和保持车道)的决策制定和运动规划
时间:2024-09-17T20:24:18.288+0800
12、 题目:Reliable Reinforcement Learning for Decision-Making in Autonomous Driving
链接:https://t.zsxq.com/GiYYN
简介:分享密歇根大学的一篇博士论文,主要研究用于自动驾驶决策的可靠强化学习!
时间:2024-09-08T16:18:28.248+0800
13、 题目:End-to-End Autonomous Driving Decision Method Based on Improved TD3 Algorithm in Complex Scenarios
链接:https://t.zsxq.com/AOiAN
简介:复杂场景下基于改进TD3算法的端到端自动驾驶决策方法
时间:2024-08-05T22:37:17.618+0800
14、 题目:Enhancing Autonomous Driving Navigation Using Soft Actor-Critic
链接:https://t.zsxq.com/FOToP
简介:近年来,自动驾驶汽车在学术界和工业界引起了广泛关注。对于这些自动驾驶汽车来说,由于交通参与者的不可预测行为和复杂的道路布局,城市环境中的决策带来了重大挑战。虽然基于深度强化学习(DRL)的现有决策方法显示出解决城市驾驶情况的潜力,但它们的收敛速度较慢,尤其是在具有高机动性的复杂场景中。在本文中,提出了一种基于Soft Actor-Critic(SAC)算法的新方法来控制自动驾驶汽车平稳、安全地进入环形交叉口,并确保其毫不延迟地到达目的地。为此,引入了一种使用卷积神经网络(CNN)与提取的特征连接的目标向量。为了评估模型的性能,在CARLA仿真器中进行了大量实验,并将其与深度Q网络(DQN)和近端策略优化(PPO)模型进行了比较。定性结果表明,与DQN和PPO模型相比,模型在高流量的场景中快速收敛,并取得了很高的成功率。
时间:2024-07-07T17:16:43.929+0800
15、 题目:An automatic driving trajectory planning approach in complex traffic scenarios based on integrated driver style inference and deep reinforcement learning
链接:https://t.zsxq.com/VXzaY
简介:如何解决复杂交通场景(如无信号灯交叉口)中对规划提出的挑战?
时间:2024-01-28T19:13:05.951+0800
16、 题目:SDS++: Online Situation-Aware Drivable Space Estimation for Automated Driving
链接:https://t.zsxq.com/8HUQU
简介:SDS++,旨在克服SDS的缺点,同时保留其优点
时间:2024-06-10T23:15:50.615+0800
17、 题目:Can Vehicle Motion Planning Generalize to Realistic Long-tail Scenarios?
链接:https://t.zsxq.com/yq8IU
简介:车辆运动规划能推广到真实的长尾场景吗?
时间:2024-04-12T23:09:46.682+0800
18、 题目:Towards learning-based planning: The nuPlan benchmark for real-world autonomous driving
链接:https://t.zsxq.com/Dwdyj
简介:走向基于学习的规划!现实世界自动驾驶的 nuPlan 基准
时间:2024-03-08T21:02:04.441+0800
19、 题目:On the Road to Portability: Compressing End-to-End Motion Planner for Autonomous Driving
链接:https://t.zsxq.com/N8rtR
简介:CVPR 2024 第一个专为压缩端到端运动规划器而设计的知识蒸馏框架
时间:2024-03-05T23:17:52.301+0800
从基于扩散模型的柔性轨迹生成,到结合大语言模型的可解释性规划;从面向长尾场景的鲁棒性强化学习,到轻量化端到端规划器的知识蒸馏——这些研究不仅展现了自动驾驶决策技术的多样性与创新性,也揭示了未来发展的关键趋势:多技术融合、场景化深耕与系统级验证。然而,如何将这些算法真正落地于复杂现实世界,仍需在安全边界定义、动态交互建模和人类驾驶行为兼容性上持续突破。可以预见,随着仿真基准(如nuPlan)的完善和生成式误差模型(如EMPERROR)的引入,自动驾驶的“智能进化”将加速迈向更高阶的自主性与可靠性。
『自动驾驶之心知识星球』,近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入