物理信息神经网络(Physics-Informed Neural Networks,简称PINN)是一种将深度学习与物理建模相结合的神经网络模型。它通过将物理定律(通常是偏微分方程或常微分方程)嵌入到神经网络的损失函数中,使模型在训练过程中能够同时满足物理规律和数据约束
我还整理出了相关的论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
标题:
Wavelets based physics informed neural networks to solve non-linear differential equations
基于小波的物理信息神经网络求解非线性微分方程
方法:
-
小波激活函数:在物理信息神经网络(PINN)中引入小波作为激活函数,利用小波的多分辨率分析和局部化特性来增强网络的泛化能力。
-
物理信息神经网络(PINN):通过将物理定律嵌入损失函数中,构建一个近似微分方程解的神经网络,并通过优化损失函数来训练网络。
-
损失函数设计:定义了包含微分方程残差、边界条件和初始条件的损失函数,通过最小化该损失函数来优化网络参数。
创新点:
-
小波激活函数的应用:使用小波作为激活函数,相比传统的激活函数(如tanh),在求解Blasius方程时,相对L2误差降低了约6.59E-03,且学习速度更快。
-
多种小波函数的比较:研究了Morlet小波、墨西哥帽小波和高斯小波三种不同的小波函数,并发现墨西哥帽小波在某些问题中表现最佳,其相对L2误差最低。
-
耦合方程的求解:将该方法扩展到求解线性和非线性耦合方程,通过分别使用独立的神经网络模型来近似不同的函数,简化了网络架构并提高了求解精度。
论文2
标题:
Physics-Informed Neural Operator for Learning Partial Differential Equations
用于学习偏微分方程的物理信息神经算子
方法:
-
物理信息神经算子(PINO):提出了一种结合训练数据和物理约束的学习框架,用于学习给定参数化偏微分方程(PDE)族的解算子。
-
多分辨率数据与PDE约束:在PINO中,将低分辨率的训练数据与高分辨率的PDE约束相结合,以提高解算子的近似精度。
-
傅里叶神经算子(FNO)框架:基于FNO框架,通过在更高分辨率下添加PDE约束,实现对真实解算子的高保真重建。
创新点:
-
多分辨率学习:首次将数据和PDE约束在不同分辨率下结合,即使在只有低分辨率训练数据的情况下,也能在高分辨率测试实例上实现几乎无误差的解算子近似,相对误差降低了约7%。
-
零样本超分辨率:在没有高分辨率训练数据的情况下,PINO能够通过PDE约束预测超出训练数据分辨率的解,且在Kolmogorov流问题中,与仅使用数据驱动方法相比,误差显著降低。
-
物理约束的优化优势:相比纯数据驱动方法,PINO通过添加PDE约束,显著提高了算子学习的泛化能力和物理合理性,且在求解时间依赖PDE时,优化挑战更小。
论文3
标题:
Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning
基于小波的物理信息神经网络求解非线性微分方程
方法:
-
物理信息图神经网络(PI-GNN):提出了一种基于物理信息的图神经网络框架,用于从原子尺度模拟中学习位错迁移率定律。
-
高通量分子动力学模拟:通过自动化高通量大规模分子动力学(MD)模拟生成训练数据,涵盖不同的温度和应力条件。
-
不确定性量化驱动的主动学习(UQ-AL):采用主动学习框架,动态选择最具不确定性的数据点进行模拟,以加速模型训练和收敛。
创新点:
-
PI-GNN框架:相比传统的基于经验的位错迁移率模型,PI-GNN能够更准确地捕捉BCC金属中复杂的位错动力学行为,预测误差降低了约50%。
-
主动学习效率提升:通过UQ-AL框架,相比被动学习方法,减少了超过40%的计算资源消耗,显著提高了数据生成和模型训练的效率。
-
模型泛化能力:PI-GNN不仅能够学习特定数据集的位错行为,还能泛化到未见的位错构型(如从偶极子数据泛化到剪切环数据),泛化误差控制在20%以内。
论文4
标题:
Physics-informed learning of governing equations from scarce data
从稀疏数据中学习物理定律的物理信息学习方法
方法:
-
物理信息神经网络与稀疏回归(PINN-SR):提出了一种结合深度神经网络和稀疏回归的方法,用于从稀疏和噪声数据中发现偏微分方程(PDE)。
-
自动微分:利用自动微分技术计算系统变量的导数,避免了传统方法中数值微分带来的误差。
-
“根-分支”网络架构:设计了一种能够处理来自不同初始/边界条件的多数据集的网络架构,增强了模型的泛化能力。
创新点:
-
稀疏数据适应性:相比传统的SINDy方法,PINN-SR能够在数据稀疏和噪声较高的情况下准确发现PDE,例如在10%噪声水平下,Burgers方程的发现误差仅为0.88%。
-
多数据集处理能力:通过“根-分支”网络架构,能够同时处理多个独立数据集,显著提高了模型在复杂条件下的适用性。
-
计算效率提升:通过ADO算法,相比直接优化的方法,显著提高了优化效率和收敛速度,减少了计算资源消耗。
-
物理可解释性:通过稀疏回归得到的PDE系数具有明确的物理意义,能够直接揭示系统的物理规律,例如在细胞迁移和增殖实验中,成功发现了与Fisher-Kolmogorov模型一致的PDE。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】