Mamba+UNet 是一种结合了状态空间模型(Mamba)和经典 UNet 架构的创新模型,旨在提升图像分割任务的性能。
我还整理出了相关的论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
标题:
VM-UNET-V2: Rethinking Vision Mamba UNet for Medical Image Segmentation
VM-UNET-V2:重新思考用于医学图像分割的视觉曼巴UNet
方法:
-
Vision State Space (VSS) Block:引入视觉状态空间块,用于捕获广泛的上下文信息,通过2D选择性扫描模块(SS2D)处理输入数据。
-
语义和细节注入(SDI)模块:增强低级和高级特征的融合,通过注意力机制对特征图进行空间和通道注意力计算,调整特征图的尺寸以匹配目标参考。
创新点:
-
性能提升:在ISIC17数据集上,VM-UNetV2的mIoU、DSC和Acc指标分别达到82.34%、90.31%和96.70%,相比UNetV2提升了超过2%的mIoU和DSC,准确率提升了0.38%。
-
计算效率:模型参数量减少至17.91M,FLOPs降低至4.40G,FPS提升至32.58,相比UNetV2在FLOPs和FPS上分别提升了约20%和1.6%。
-
长距离依赖建模:通过VSS块的线性复杂度和高效建模能力,解决了CNN在长距离依赖建模上的不足,同时避免了Transformer的二次复杂度问题。
-
语义和细节融合:通过SDI模块将语义信息注入低级特征,同时用细节信息优化高级特征,显著提升了分割精度。
论文2
标题:
Weak-Mamba-UNet: Visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation
Weak-Mamba-UNet:视觉曼巴使CNN和ViT在基于涂鸦的医学图像分割中表现更好
方法:
-
多架构融合:结合CNN(UNet)、ViT(SwinUNet)和Mamba(MambaUNet)三种架构,通过编码器-解码器网络实现局部特征提取、全局上下文理解和长距离依赖建模。
-
伪标签生成:通过多视图交叉监督机制,将稀疏的涂鸦标注转换为密集的伪标签,用于迭代学习和网络优化。
创新点:
-
性能提升:在MRI心脏分割数据集上,Weak-Mamba-UNet的Dice系数达到0.9171,准确率(Acc)达到99.63%,相比仅使用UNet或SwinUNet的框架,Dice系数分别提升了约0.017和0.012。
-
多视图交叉监督:首次提出结合CNN、ViT和Mamba架构的多视图交叉监督框架,通过伪标签实现不同网络之间的协同优化,显著提升了分割精度。
-
稀疏标注适应性:在涂鸦标注的弱监督条件下,通过伪标签生成和多网络协同训练,显著降低了对密集标注的依赖,降低了标注成本。
-
架构互补性:验证了Mamba架构在弱监督任务中的有效性,通过结合CNN和ViT的优势,进一步提升了模型的泛化能力和分割性能。
论文3
标题:
CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation
CM-UNet:用于遥感图像语义分割的混合CNN-Mamba UNet
方法:
-
CNN编码器与Mamba解码器:提出CM-UNet框架,结合CNN编码器提取局部特征和Mamba解码器聚合全局信息,实现高效的语义分割。
-
CSMamba块:引入CSMamba块作为核心分割解码器,通过通道和空间注意力增强特征交互和全局-局部信息融合。
创新点:
性能提升:在ISPRS Potsdam数据集上,CM-UNet的mF1达到93.05%,OA为91.86%,mIoU为87.21%,相比UNetformer分别提升了0.25%、0.56%和0.41%。在ISPRS Vaihingen数据集上,mIoU达到85.48%,相比其他方法提升了2.78%到16.08%。
-
全局-局部信息融合:通过CSMamba块和MSAA模块,有效整合全局和局部信息,显著提升了对大规模遥感图像的分割性能。
-
计算效率:CM-UNet在FLOPs、参数量和内存占用上表现出色,FLOPs仅为6.01G,参数量为12.89M,内存占用为366.33MB,同时mIoU达到85.48%,优于其他模型。
-
架构优化:结合多尺度特征学习和多输出监督,进一步提升了模型对复杂场景的分割精度。
论文4
标题:
Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement
Mamba-SEUNet:用于单声道语音增强的Mamba UNet
方法:
-
Mamba-UNet架构:提出Mamba-SEUNet,结合Mamba和U-Net框架,通过双向Mamba块捕捉语音信号的前向和后向依赖关系。
-
TS-Mamba块:引入时间-频率Mamba块,通过双向SSM公式整合过去和未来信息,增强全局和局部特征学习。
创新点:
-
性能提升:在VCTK+DEMAND数据集上,Mamba-SEUNet (L)的PESQ分数达到3.59,STOI为0.96,CSIG为4.80,CBAK为4.02,COVL为4.32。结合感知对比拉伸(PCS)技术后,PESQ进一步提升至3.73。
-
计算效率:相比Transformer和Conformer,Mamba-SEUNet显著降低了计算复杂度,FLOPs仅为10.28G(Mamba-SEUNet (M)),同时性能优于Conformer和Transformer。
-
双向信息捕捉:通过双向Mamba块,有效整合语音信号的前向和后向依赖关系,提升了对长序列语音信号的建模能力。
-
多尺度信息融合:通过U-Net架构中的跳跃连接和多尺度特征融合,增强了对语音信号细节的恢复能力。
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】