2025最新方案!Mamba赋能UNet!轻松实现高效分割!

Mamba+UNet 是一种结合了状态空间模型(Mamba)和经典 UNet 架构的创新模型,旨在提升图像分割任务的性能。

我还整理出了相关的论文+开源代码,以下是精选部分论文

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】 

论文1

标题:

VM-UNET-V2: Rethinking Vision Mamba UNet for Medical Image Segmentation

VM-UNET-V2:重新思考用于医学图像分割的视觉曼巴UNet

法:

  • Vision State Space (VSS) Block:引入视觉状态空间块,用于捕获广泛的上下文信息,通过2D选择性扫描模块(SS2D)处理输入数据。

  • 语义和细节注入(SDI)模块:增强低级和高级特征的融合,通过注意力机制对特征图进行空间和通道注意力计算,调整特征图的尺寸以匹配目标参考。

创新点:

  • 性能提升:在ISIC17数据集上,VM-UNetV2的mIoU、DSC和Acc指标分别达到82.34%、90.31%和96.70%,相比UNetV2提升了超过2%的mIoU和DSC,准确率提升了0.38%。

  • 计算效率:模型参数量减少至17.91M,FLOPs降低至4.40G,FPS提升至32.58,相比UNetV2在FLOPs和FPS上分别提升了约20%和1.6%。

  • 长距离依赖建模:通过VSS块的线性复杂度和高效建模能力,解决了CNN在长距离依赖建模上的不足,同时避免了Transformer的二次复杂度问题。

  • 语义和细节融合:通过SDI模块将语义信息注入低级特征,同时用细节信息优化高级特征,显著提升了分割精度。

image.png

论文2

标题:

Weak-Mamba-UNet: Visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation

Weak-Mamba-UNet:视觉曼巴使CNN和ViT在基于涂鸦的医学图像分割中表现更好

法:

  • 多架构融合:结合CNN(UNet)、ViT(SwinUNet)和Mamba(MambaUNet)三种架构,通过编码器-解码器网络实现局部特征提取、全局上下文理解和长距离依赖建模。

  • 伪标签生成:通过多视图交叉监督机制,将稀疏的涂鸦标注转换为密集的伪标签,用于迭代学习和网络优化。

创新点:

  • 性能提升:在MRI心脏分割数据集上,Weak-Mamba-UNet的Dice系数达到0.9171,准确率(Acc)达到99.63%,相比仅使用UNet或SwinUNet的框架,Dice系数分别提升了约0.017和0.012。

  • 多视图交叉监督:首次提出结合CNN、ViT和Mamba架构的多视图交叉监督框架,通过伪标签实现不同网络之间的协同优化,显著提升了分割精度。

  • 稀疏标注适应性:在涂鸦标注的弱监督条件下,通过伪标签生成和多网络协同训练,显著降低了对密集标注的依赖,降低了标注成本。

  • 架构互补性:验证了Mamba架构在弱监督任务中的有效性,通过结合CNN和ViT的优势,进一步提升了模型的泛化能力和分割性能。

image.png

论文3

标题:

CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation

CM-UNet:用于遥感图像语义分割的混合CNN-Mamba UNet
方法:
  • CNN编码器与Mamba解码器:提出CM-UNet框架,结合CNN编码器提取局部特征和Mamba解码器聚合全局信息,实现高效的语义分割。
  • CSMamba块:引入CSMamba块作为核心分割解码器,通过通道和空间注意力增强特征交互和全局-局部信息融合。

创新点:

性能提升:在ISPRS Potsdam数据集上,CM-UNet的mF1达到93.05%,OA为91.86%,mIoU为87.21%,相比UNetformer分别提升了0.25%、0.56%和0.41%。在ISPRS Vaihingen数据集上,mIoU达到85.48%,相比其他方法提升了2.78%到16.08%。

  • 全局-局部信息融合:通过CSMamba块和MSAA模块,有效整合全局和局部信息,显著提升了对大规模遥感图像的分割性能。

  • 计算效率:CM-UNet在FLOPs、参数量和内存占用上表现出色,FLOPs仅为6.01G,参数量为12.89M,内存占用为366.33MB,同时mIoU达到85.48%,优于其他模型。

  • 架构优化:结合多尺度特征学习和多输出监督,进一步提升了模型对复杂场景的分割精度。

image.png

论文4

标题:

Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement

Mamba-SEUNet:用于单声道语音增强的Mamba UNet

法:

  • Mamba-UNet架构提出Mamba-SEUNet,结合Mamba和U-Net框架,通过双向Mamba块捕捉语音信号的前向和后向依赖关系。

  • TS-Mamba块:引入时间-频率Mamba块,通过双向SSM公式整合过去和未来信息,增强全局和局部特征学习。

创新点:

  • 性能提升:在VCTK+DEMAND数据集上,Mamba-SEUNet (L)的PESQ分数达到3.59,STOI为0.96,CSIG为4.80,CBAK为4.02,COVL为4.32。结合感知对比拉伸(PCS)技术后,PESQ进一步提升至3.73。

  • 计算效率:相比Transformer和Conformer,Mamba-SEUNet显著降低了计算复杂度,FLOPs仅为10.28G(Mamba-SEUNet (M)),同时性能优于Conformer和Transformer。

  • 双向信息捕捉:通过双向Mamba块,有效整合语音信号的前向和后向依赖关系,提升了对长序列语音信号的建模能力。

  • 多尺度信息融合:通过U-Net架构中的跳跃连接和多尺度特征融合,增强了对语音信号细节的恢复能力。

image.png

 更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】

### Mamba-UNet 项目概述 Mamba-UNet 是一种基于 UNet 架构并集成 Mamba 技术的先进解决方案,特别适用于医学图像分割领域[^1]。此项目不仅提供了高效的模型训练能力,还通过采用轻量化的 CNN 和 Transformer 替代方案来适应计算资源有限的实际医疗环境需求。 #### 项目目录结构及介绍 项目的文件夹布局遵循常见的 Python 包组织方式: - `data`: 存储数据集以及预处理后的样本。 - `models`: 放置定义好的神经网络架构代码。 - `utils`: 实用工具函数集合,如评估指标计算、可视化辅助等。 - `train.py`: 主要负责启动整个训练流程脚本。 - `predict.py`: 提供预测功能入口点,支持单张图片推理或多批次测试集批量处理。 #### 安装指南 为了顺利运行该项目,建议按照如下步骤完成依赖项安装: ```bash # 克隆仓库到本地机器上 git clone https://gitcode.com/gh_mirrors/ma/Mamba-UNet.git cd Mamba-UNet/ # 创建虚拟环境 (推荐Python版本 >=3.8) conda create -n mamba-unet python=3.9 conda activate mamba-unet # 安装必要的库和包 pip install -r requirements.txt ``` #### 配置说明 配置参数主要集中在`config.yaml` 文件内,用户可以根据具体应用场景调整超参设置,比如学习率、批大小、迭代次数等重要选项。对于硬件加速的支持,默认情况下会优先检测 GPU 是否可用;如果不存在,则自动切换至 CPU 模式执行运算操作。 #### 使用示例 下面给出一段简单的例子展示如何利用已训练完毕的模型来进行新输入图像的分类任务: ```python from predict import PredictPipeline import cv2 if __name__ == "__main__": pipeline = PredictPipeline(model_path="path/to/trained/model.pth") img = cv2.imread("test_image.png", flags=cv2.IMREAD_GRAYSCALE) result_mask = pipeline.predict(img) # 将结果保存为PNG格式文件 cv2.imwrite('output_segmentation_result.png', result_mask * 255) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值