维度打击,机器学习中的降维算法:ISOMAP & MDS

降维是机器学习中很有意思的一部分,很多时候它是无监督的,能够更好地刻画数据,对模型效果提升也有帮助,同时在数据可视化中也有着举足轻重的作用。

一说到降维,大家第一反应总是PCA,基本上每一本讲机器学习的书都会提到PCA,而除此之外其实还有很多很有意思的降维算法,其中就包括isomap,以及isomap中用到的MDS。

ISOMAP是‘流形学习’中的一个经典算法,流形学习贡献了很多降维算法,其中一些与很多机器学习算法也有结合,但上学的时候还看了蛮多的机器学习的书,从来没听说过流形学习的概念,还是在最新的周志华版的《机器学习》里才看到,很有意思,记录分享一下。

流形学习

流形学习应该算是个大课题了,它的基本思想就是在高维空间中发现低维结构。比如这个图:此处输入图片的描述
这些点都处于一个三维空间里,但我们人一看就知道它像一块卷起来的布,图中圈出来的两个点更合理的距离是A中蓝色实线标注的距离,而不是两个点之间的欧式距离(A中蓝色虚线)。

此时如果你要用PCA降维的话,它根本无法发现这样卷曲的结构(因为PCA是典型的线性降维,而图示的结构显然是非线性的),最后的降维结果就会一团乱麻,没法很好的反映点之间的关系。而流形学习在这样的场景就会有很好的效果。

我对流形学习本身也不太熟悉,还是直接说算法吧。

ISOMAP

在降维算法中,一种方式是提供点的坐标进行降维,如PCA;另一种方式是提供点之间的距离矩阵,ISOMAP中用到的MDS(Multidimensional Scaling)就是这样。
在计算距离的时候,最简单的方式自然是计算坐标之间的欧氏距离,但ISOMAP对此进行了改进,就像上面图示一样:

**1.**通过kNN(k-Nearest Neighbor)找到点的k个最近邻,将它们连接起来构造一张图。
**2.**通过计算同中各点之间的最短路径,作为点之间的距离 d i j d_{ij} dij放入距离矩阵 D D D
**3.**将 D D D传给经典的MDS算法,得到降维后的结果。

ISOMAP本身的核心就在构造点之间的距离,初看时不由得为其拍案叫绝,类似的思想在很多降维算法中都能看到,比如能将超高维数据进行降维可视化的t-SNE。
ISOMAP效果,可以看到选取的最短路径比较好地还原了期望的蓝色实线,用这个数据进行降维会使流形得以保持:
此处输入图片的描述
ISOMAP算法步骤可谓清晰明了,所以本文主要着重讲它中间用到的MDS算法,也是很有意思的。

经典MDS(Multidimensional Scaling)

如上文所述,MDS接收的输入是一个距离矩阵 D D D,我们把一些点画在坐标系里:
此处输入图片的描述
如果只告诉一个人这些点之间的距离(假设是欧氏距离),他会丢失那些信息呢?
**a.**我们对点做平移,点之间的距离是不变的。
**b.**我们对点做旋转、翻转,点之间的距离是不变的。

所以想要从 D D D还原到原始数据 X X X是不可能的,因为只给了距离信息之后本身就丢掉了很多东西,不过不必担心,即使这样我们也可以对数据进行降维。

我们不妨假设: X X X是一个 n × q n \times q n×q的矩阵,n为样本数,q是原始的维度
计算一个很重要的矩阵 B B B
B = X X T      ( n × n ) = ( X M ) ( X M ) T      ( M 是 一 组 正 交 基 ) = X M M T X = X X T \begin{aligned} B &= XX^T \space\space\space\space(n\times n) \\ &= (XM)(XM)^T \space\space\space\space(M是一组正交基)\\ &= XMM^TX \\ &= XX^T \end{aligned} B=XXT    (n×n)=(XM)(XM)T    (M)=XMMTX=XXT
可以看到我们通过 M M M X X X做正交变换并不会影响 B B B的值,而正交变换刚好就是对数据做旋转、翻转操作的
所以如果我们想通过 B B B反算出 X X X,肯定是没法得到真正的 X X X,而是它的任意一种正交变换后的结果。

B中每个元素的值为:
b i j = ∑ k = 1 q x i k x j k \begin{aligned} b_{ij} &= \sum_{k=1}^{q}x_{ik}x_{jk} \end{aligned} bij=k=1qxikxjk
计算距离矩阵 D D D,其中每个元素值为:
d i j 2 = ( x i − x j ) 2 = ∑ k = 1 q ( x i k − x j k ) 2 = ∑ k = 1 q x i k 2 + x j k 2 − 2 x i k x j k = b i i + b j j − 2 b i j \begin{aligned} d_{ij}^2 &= (x_i-x_j)^2 \\ &= \sum_{k=1}^{q}(x_{ik}-x_{jk})^2\\ &= \sum_{k=1}^{q}x_{ik}^2+x_{jk}^2-2x_{ik}x_{jk}\\ &=b_{ii}+b_{jj}-2b_{ij} \end{aligned} dij2=(xixj)2=k=1q(xikxjk)2=k=1qxik2+xjk22xikxjk=bii+bjj2bij\tag{dij_square}\label{dij_square}
这时候我们有的只有 D D D,如果能通过 D D D计算出 B B B,再由 B B B计算出 X X X,不就达到效果了吗。

所以思路是:从D->B->X
此时我们要对X加一些限制,前面说过我们平移所有点是不会对距离矩阵造成影响的,所以我们就把数据的中心点平移到原点,对X做如下限制(去中心化):
∑ i = 1 n x i k = 0 , f o r   a l l   k = 1.. q \begin{aligned} \sum_{i=1}^nx_{ik} = 0, for \space all \space k =1..q \end{aligned} i=1nxik=0,for all k=1..q
所以有
∑ j = 1 n b i j = ∑ j = 1 n ∑ k = 1 q x i k x j k = ∑ k = 1 q x i k ( ∑ j = 1 n x j k ) = 0 \begin{aligned} \sum_{j=1}^nb_{ij} &= \sum_{j=1}^n\sum_{k=1}^{q}x_{ik}x_{jk}\\ &=\sum_{k=1}^{q}x_{ik}\left(\sum_{j=1}^nx_{jk}\right)\\ &=0 \end{aligned} j=1nbij=j=1nk=1qxikxjk=k=1qxik(j=1nxjk)=0
类似的
∑ i = 1 n b i j = ∑ i = 1 n ∑ k = 1 q x i k x j k = ∑ k = 1 q x j k ( ∑ i = 1 n x i k ) = 0 \begin{aligned} \sum_{i=1}^nb_{ij} &= \sum_{i=1}^n\sum_{k=1}^{q}x_{ik}x_{jk}\\ &=\sum_{k=1}^{q}x_{jk}\left(\sum_{i=1}^nx_{ik}\right)\\ &=0 \end{aligned} i=1nbij=i=1nk=1qxikxjk=k=1qxjk(i=1nxik)=0
可以看到即 B B B的任意行(row)之和以及任意列(column)之和都为0了。

设T为 B B B的trace,则有:
∑ i = 1 n d i j 2 = ∑ i = 1 n b i i + b j j − 2 b i j = T + n b j j + 0 \begin{aligned} \sum_{i=1}^nd_{ij}^2 &= \sum_{i=1}^n b_{ii}+b_{jj}-2b_{ij}\\ &= T + nb_{jj} + 0 \end{aligned} i=1ndij2=i=1nbii+bjj2bij=T+nbjj+0
∑ j = 1 n d i j 2 = ∑ j = 1 n b i i + b j j − 2 b i j = n b i i + T + 0 \begin{aligned} \sum_{j=1}^nd_{ij}^2 &= \sum_{j=1}^n b_{ii}+b_{jj}-2b_{ij}\\ &= nb_{ii} + T + 0 \end{aligned} j=1ndij2=j=1nbii+bjj2bij=nbii+T+0
∑ i = 1 n ∑ j = 1 n d i j 2 = 2 n T \begin{aligned} \sum_{i=1}^n\sum_{j=1}^nd_{ij}^2 &= 2nT \end{aligned} i=1nj=1ndij2=2nT
得到B:根据公式 \eqref{dij_square}我们有:
b i j = − 1 2 ( d i j 2 − b i i − b j j ) \begin{aligned} b_{ij} &= -\frac12(d_{ij}^2-b_{ii}-b_{jj}) \end{aligned} bij=21(dij2biibjj)
而(根据前面算 ∑ i = 1 n d i j 2 \sum_{i=1}^nd_{ij}^2 i=1ndij2, ∑ j = 1 n d i j 2 \sum_{j=1}^nd_{ij}^2 j=1ndij2 ∑ i = 1 n ∑ j = 1 n d i j 2 \sum_{i=1}^n\sum_{j=1}^nd_{ij}^2 i=1nj=1ndij2的公式可以得到)
b i i = − T n + 1 n ∑ j = 1 n d i j 2 b j j = − T n + 1 n ∑ i = 1 n d i j 2 2 T n = 1 n 2 ∑ i = 1 n ∑ j = 1 n d i j 2 \begin{aligned} b_{ii} &= -\frac{T}n+\frac1n\sum_{j=1}^nd_{ij}^2\\ b_{jj} &= -\frac{T}n+\frac1n\sum_{i=1}^nd_{ij}^2\\ \frac{2T}{n} &= \frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^nd_{ij}^2 \end{aligned} biibjjn2T=nT+n1j=1ndij2=nT+n1i=1ndij2=n21i=1nj=1ndij2
所以
b i j = − 1 2 ( d i j 2 − b i i − b j j ) = − 1 2 ( d i j 2 − 1 n ∑ j = 1 n d i j 2 − 1 n ∑ i = 1 n d i j 2 + 2 T n ) = − 1 2 ( d i j 2 − 1 n ∑ j = 1 n d i j 2 − 1 n ∑ i = 1 n d i j 2 + 1 n 2 ∑ i = 1 n ∑ j = 1 n d i j 2 ) = − 1 2 ( d i j 2 − d i ⋅ 2 − d ⋅ j 2 + d ⋅ ⋅ 2 ) \begin{aligned} b_{ij} &= -\frac12(d_{ij}^2-b_{ii}-b_{jj})\\ &= -\frac12(d_{ij}^2-\frac1n\sum_{j=1}^nd_{ij}^2-\frac1n\sum_{i=1}^nd_{ij}^2+\frac{2T}{n})\\ &= -\frac12(d_{ij}^2-\frac1n\sum_{j=1}^nd_{ij}^2-\frac1n\sum_{i=1}^nd_{ij}^2+\frac{1}{n^2}\sum_{i=1}^n\sum_{j=1}^nd_{ij}^2)\\ &= -\frac12(d_{ij}^2-d_{i\cdot}^2-d_{\cdot j}^2+d_{\cdot\cdot}^2) \end{aligned} bij=21(dij2biibjj)=21(dij2n1j=1ndij2n1i=1ndij2+n2T)=21(dij2n1j=1ndij2n1i=1ndij2+n21i=1nj=1ndij2)=21(dij2di2dj2+d2)
可以看到 d i ⋅ 2 d_{i\cdot}^2 di2 D 2 D^2 D2行均值; d ⋅ j 2 d_{\cdot j}^2 dj2是列均值; d ⋅ ⋅ 2 d_{\cdot\cdot}^2 d2 是矩阵的均值。

这样我们就可以通过矩阵 D D D得到矩阵 B B B

因为B是对称的矩阵,所以可以通过特征分解得到:
B = V Λ V − 1 = V Λ V T \begin{aligned} B &= V\Lambda V^{-1}\\ &= V\Lambda V^T \end{aligned} B=VΛV1=VΛVT
在最开始我们其实做了一个假设, D D D是由一个 n × q n \times q n×q的数据 X X X生成的,如果事实是这样的, D D D会是一个对称实矩阵,此时得到的 B B B刚好会有 q q q个非0的特征值,也就是说 B B B的秩等于 q q q,如果我们想还原 X X X,就选择前 q q q个特征值和特征向量;如果想要达到降维的目的,就选择制定的 p p p个( p &lt; q p&lt;q p<q)。

此时我们选择前 p p p个特征值和特征向量,(这一步和PCA里面很类似):
B ∗ = V ∗ Λ ∗ V ∗ T V ∗ ( n × p ) , Λ ∗ ( p × p ) \begin{aligned} B^* = V^*\Lambda ^* V^{*T} \\ V^*(n \times p), \Lambda^* (p \times p) \end{aligned} B=VΛVTV(n×p),Λ(p×p)
所以有( Λ \Lambda Λ是特征值组成的对角矩阵):
B ∗ = V ∗ Λ ∗ 1 2 ∗ Λ ∗ 1 2 V ∗ T = X ∗ X ∗ T \begin{aligned} B^* &amp;= V^*{\Lambda ^*}^{\frac12}*{\Lambda ^*}^{\frac12} V^{*T}\\ &amp;= X^*{X^*}^T \end{aligned} B=VΛ21Λ21VT=XXT
因此
X ∗ = V ∗ Λ ∗ 1 2 X^* = V^*{\Lambda ^*}^{\frac12} X=VΛ21
如果选择 p = q p=q p=q的话,此时得到的 X ∗ X^* X就是原数据去中心化并做了某种正交变换后的值了。

MDS的例子

举个例子:拿美国一些大城市之间的距离作为矩阵传进去,简单写一写代码:
此处输入图片的描述

import numpy as np
import matplotlib.pyplot as plt

def mds(D,q):
    D = np.asarray(D)
    DSquare = D**2
    totalMean = np.mean(DSquare)
    columnMean = np.mean(DSquare, axis = 0)
    rowMean = np.mean(DSquare, axis = 1)
    B = np.zeros(DSquare.shape)
    for i in range(B.shape[0]):
        for j in range(B.shape[1]):
            B[i][j] = -0.5*(DSquare[i][j] - rowMean[i] - columnMean[j]+totalMean)
    eigVal,eigVec = np.linalg.eig(B)
    X = np.dot(eigVec[:,:q],np.sqrt(np.diag(eigVal[:q])))

    return X


D = [[0,587,1212,701,1936,604,748,2139,2182,543],
[587,0,920,940,1745,1188,713,1858,1737,597],
[1212,920,0,879,831,1726,1631,949,1021,1494],
[701,940,879,0,1374,968,1420,1645,1891,1220],
[1936,1745,831,1374,0,2339,2451,347,959,2300],
[604,1188,1726,968,2339,0,1092,2594,2734,923],
[748,713,1631,1420,2451,1092,0,2571,2408,205],
[2139,1858,949,1645,347,2594,2571,0,678,2442],
[2182,1737,1021,1891,959,2734,2408,678,0,2329],
[543,597,1494,1220,2300,923,205,2442,2329,0]]

label = ['Atlanta','Chicago','Denver','Houston','Los Angeles','Miami','New York','San Francisco','Seattle','Washington, DC']
X = mds(D,2)
plt.plot(X[:,0],X[:,1],'o')
for i in range(X.shape[0]):
    plt.text(X[i,0]+25,X[i,1]-15,label[i])
plt.show()

最后画出来的图中,各个城市的位置和真实世界中的相对位置都差不多:
此处输入图片的描述
注意,这个例子中其实也有‘流形’在里面,因为我们的地球其实是一个三维,而城市间距离刻画的是在球面上的距离,所以最后如果你去看求出来的特征值,并不像前面说的那样只有q个非0的值。

reference

  1. 一个nthu的课程,除了pdf还有视频,本文绝大多数关于MDS的内容都是从这里整理的:http://101.96.10.65/www.stat.nthu.edu.tw/~swcheng/Teaching/stat5191/lecture/06_MDS.pdf
  2. 一个MDS的例子,用于数据可视化,例子的数据来源于这里。http://www.benfrederickson.com/multidimensional-scaling/
  3. 周志华《机器学习》
  • 50
    点赞
  • 167
    收藏
    觉得还不错? 一键收藏
  • 17
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值