聊聊Nhanes数据怎么做中介效应分析

本文讨论了如何在NANESA数据中进行挥发性有机化合物与骨骼健康指标的中介效应分析,使用mediation和mma包进行统计模型构建,涉及链式插补处理缺失值,并展示了前门调整方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近不少粉丝私信问我NANESA数据怎么做中介效应分析,我也查了10余篇文献,全都是普通中介分析的做法,没有涉及加权。
先来看这篇8分的文章
Association of volatile organic compounds co-exposure with bone health indicators and potential mediators(共同接触挥发性有机化合物与骨骼健康指标和潜在介质的关系)

在这里插入图片描述
这个研究是探索挥发性有机物的个体代谢产物和组合代谢产物之间的关系尿液中的(mVOCs),代表VOCs的内部暴露水平,具有骨密度(BMD),骨质疏松症(OP)和骨折以及潜在的介质。
咱们来看下它的统计学部分

在这里插入图片描述
看到了把,使用的是mediation包,这是个常用的中介分析的包,我已经有多篇文章进行介绍了。

在这里插入图片描述
再来看一篇高分的,

在这里插入图片描述
咱们看下统计学部分,也是使用mediation包

在这里插入图片描述
这篇也是一样,Prospective evaluation of cardiovascular risk andmortality in patients with psoriasis: A population-base study(银屑病患者心血管风险和死亡率的前瞻性评估:一项基于人群的研究)

在这里插入图片描述
研究的是银屑病和冠心病发病的中介因素,咱们来看下统计学部分,这篇文章介绍缺失超过30%的变量被删除,以后咱们也可以这样做。采用链式插补的方法进行插补,咱们在文章《一篇来自JAMA(IF=51)的NHANES数据插补方法》已经介绍了链式插补,看来高分文章都喜欢链式插补。
咱们看下它的统计学部分

在这里插入图片描述
使用的是mma包,这个包我查过了和mediation包差不多。

最后来介绍一篇7分的文献,为什么放在最后介绍呢,因为它是个统计专业的杂志,应该可靠性很强,而且它还附带了代码

在这里插入图片描述

作者后面还很牛的表示,它的统计经过了大佬的肯定,让咱们不敢怀疑。

在这里插入图片描述
最后作者附带了代码,虽然作者扯到了什么前门公式,但是我看了一下并没有涉及权重,和咱们既往介绍的方法很像。代码如下

set.seed(12345)
#Set variables
d$exp <- d$pain #exposure
d$med <- d$opioid #mediator
d$out <- d$mortality #outcome
#Create temporary exposure and mediator
d$exptemp <- d$exp
d$medtemp <- d$med
#Run a logistic regression model (exposure -> mediator)
reg1 <- glm(med ~ as.factor(exptemp) + covariates, data=d, family=binomial(link="logit"))
#Run a logistic regression model (mediator -> outcome)
reg2 <- glm(out ~ as.factor(medtemp) + as.factor(exp) + covariates, data=d, family=binomial(link="logit"))
#Create a potential outcome model (exposure -> mediator)
#Create combined datasets: 1) everyone set to exp=0, and 2) everyone set to exp=1
levelsofexp <- unique(d$exp)
d1 <- d
d2 <- d
d1$expstar <- levelsofexp[1] #exp=0
d2$expstar <- levelsofexp[2] #exp=1
newmyd1 <- rbind(d1, d2)
N1 <- nrow(newmyd1)
newmyd1$exptemp <- newmyd1$expstar
newmyd1$med_po <- rbinom(N1, size = 1, prob=1/(1+exp(-predict(reg1,newdata=newmyd1))))
reg1_po <- glm(med_po ~ as.factor(exptemp), data=newmyd1, family=binomial(link="logit"))
#Create a potential outcome model (mediator -> outcome)
#Create combined datasets: 1) everyone set to med=0, and 2) everyone set to med=1
levelsofmed<-unique(d$med)
d3 <- d
d4 <- d
d3$medstar<- levelsofmed[1] #med=0
25
d4$medstar<- levelsofmed[2] #med=1
newmyd2<-rbind(d3, d4)
N2<-nrow(newmyd2)
newmyd2$medtemp <- newmyd2$medstar
newmyd2$out_po <- rbinom(N2, size = 1, prob=1/(1+exp(-predict(reg2, newdata=newmyd2))))
reg2_po <- glm(out_po~ as.factor(medtemp), data=newmyd2, family=binomial(link="logit"))
##Front-door adjustment
#Y=death, M=Opioid, X=Pain
#Path-specific front-door effect
newmyd1$medtemp <- newmyd1$med_po
newmyd1$po <- rbinom(N1, size = 1, prob=1/(1+exp(-predict(reg2, newdata=newmyd1))))
summary(glm(po ~ as.factor(exptemp), data=newmyd1, family=binomial(link="logit")))
#Bootstrap can be used to obtain 95% confidence intervals.

本期就这样结束了,祝大家新年快乐。

### 如何在 SPSS 中处理 NHANES 加权数据 #### 处理加权数据的重要性 NHANES(National Health and Nutrition Examination Survey)数据库提供了丰富的健康和营养调查数据。为了确保分析结果能够代表美国总体人口,在处理这些数据时必须考虑权重变量[^3]。 #### 准备工作 1. **安装并加载必要的软件** - 确保已安装最新版本的 IBM SPSS Statistics 软件。 2. **获取 NHANES 数据文件** - 可以通过官方渠道下载所需年份的数据集,并将其保存至本地计算机上易于访问的位置。 #### 导入数据到 SPSS ```spss GET FILE='C:\path\to\nhanes_data.sav'. DATASET NAME nhanes. ``` #### 设置复杂抽样设计 由于 NHANES 使用多阶段概率抽样的方法收集数据,因此需要设置复杂的抽样设计来反映这种结构: ```spss * 定义复杂抽样计划 *. COMPLEX SAMPLES PLAN FILE='C:\path\to\sampling_plan.csaplan' /PLAN=CSPLAN /STRATA=strata_variable /PSU=psu_variable /WEIGHT=wtint2yr. * 应用定义好的采样方案给当前活动数据集 * USE CSPLAN FOR ANALYSIS AND REPORTING IN THIS SESSION. ``` 这里 `strata_variable` 和 `psu_variable` 是指分层变量以及初级抽样单元 (Primary Sampling Unit, PSU),而 `wtint2yr` 则是指两年周期内的访谈权重变量名称。 #### 进行加权统计分析 当完成上述准备工作之后就可以执行各种类型的加权统计测试了。例如计算均值、比例或其他描述性统计数据: ```spss * 计算加权平均身高 *. CSMEANS VARIABLES=bmxht BY sex /STATISTICS MEAN SE CI95 /DESIGN WEIGHT=wtmec2yr STRATUM=sdmvstra PSU=sdmvpsu. ``` 此命令会基于指定的设计参数输出按性别分类的不同年龄段人群身高的加权估计及其标准误和置信区间。 对于更高级别的回归模型或者其他多元技术也可以采用相似的方式加入权重调整选项来进行建模。 #### 验证结果的有效性和准确性 最后一步是对所得的结果进行全面审查,确认其合理性和解释力;必要时可以与其他研究机构发布的公开报告对比验证自己的发现是否一致。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值