代码+视频,手把手教你下载NHANES死亡数据

美国国家健康与营养调查( NHANES, National Health and Nutrition Examination Survey)是一项基于人群的横断面调查,旨在收集有关美国家庭人口健康和营养的信息。
地址为:https://wwwn.cdc.gov/nchs/nhanes/Default.aspx

在这里插入图片描述

既往再文章《Nhanes临床数据库挖掘教程1----数据库下载》中,咱们已经初步介绍了Nhanes临床数据的下载,但是这个数据没有涉及到死亡结局和随访时间,本次继续视频介绍如何下载死亡结局相关的数据。
死亡结局相关的数据地址如下:
https://www.cdc.gov/nchs/data-linkage/mortality.htm

手把手教你下载NHANES死亡数据

代码

library(readr)
library(dplyr)
#library(foreign)

setwd("E:/公众号文章2024年/nhanes死亡数据")


srvyin <- paste("NHANES_2007_2008_MORT_2019_PUBLIC.dat")   # full .DAT name here
srvyout <- "NHANES_2007_2008" # shorthand dataset name here


dsn <- read_fwf(file=srvyin,
                col_types = "iiiiiiii",
                fwf_cols(seqn = c(1,6),
                         eligstat = c(15,15),
                         mortstat = c(16,16),
                         ucod_leading = c(17,19),
                         diabetes = c(20,20),
                         hyperten = c(21,21),
                         permth_int = c(43,45),
                         permth_exm = c(46,48)
                ),
                na = c("", ".")
)

assign(paste0(srvyout), dsn)

#ELIGSTAT: Eligibility Status for Mortality Follow-up
table(dsn$eligstat)
#1 = "Eligible"
#2 = "Under age 18, not available for public release"
#3 = "Ineligible"


NHANES_2007_2008<-subset(NHANES_2007_2008,NHANES_2007_2008$eligstat == '1')
names(NHANES_2007_2008)<-toupper(names(NHANES_2007_2008))
#############
library(tidyverse)
library(haven)
library(nhanesA)
library(dplyr)
bc<-read.csv("E:/nhanes/nhanes.csv",sep=',',header=TRUE)

data<-join_all(list(NHANES_2007_2008, bc), by = 'SEQN', type = 'full')
data<-inner_join(NHANES_2007_2008,bc, by = 'SEQN')
### NHANES数据库中患者死亡数据获取方法 NHANES(全国健康与营养检查调查)是一个大规模、长期性的研究项目,旨在收集美国人口的健康状况和营养状态的数据[^3]。对于想要查询NHANES数据库中的患者死亡相关信息的研究人员来说,具体的方法如下: #### 使用NHANES-国家死亡指数(National Death Index, NDI) 为了获得有关参与者是否在随访期间去世的信息以及具体的死亡原因,研究人员通常会利用NHANES-NDI链接文件。这些文件包含了来自NHANES参与者的匿名化记录,并将其与NDI相匹配以确认死亡事件的发生时间和根本死因编码。 #### 应用生存分析技术评估风险因素 针对此类纵向队列数据分析,常用统计建模工具如Cox比例风险回归模型(HR),用于估计各种暴露变量对全因或特定病因死亡率的影响程度;同时采用竞争性风险分析来处理可能存在多个互斥结局的竞争效应问题[^2]。 ```python import pandas as pd from lifelines import CoxPHFitter # 假设df为已加载并预处理好的NHANES关联NDI数据框 cph = CoxPHFitter() cph.fit(df[['age', 'sex', 'smoking_status', 'cholesterol_level', 'followup_time', 'event_indicator']], duration_col='followup_time', event_col='event_indicator') print(cph.summary) ``` 上述代码展示了如何基于Python编程环境下的`lifelines`库实现基本的COX回归拟合过程,其中输入参数包括几个可能影响个体存活时间的因素(例如年龄、性别、吸烟情况等),以及两个特殊字段——随访时长(`followup_time`)和指示是否有终点事件发生的标志位(`event_indicator`)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天桥下的卖艺者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值