【车道线检测(0)】卷首语

车道线检测领域,早期的LaneNet、CondLaneNet等模型。现在在精度、实时性、复杂场景适应性等方面有了更多进展。

​Head(输出头)的设计角度分类

在车道线检测任务中,Head(输出头)的设计角度直接影响模型的性能、灵活性和适用场景。根据技术思路的不同,可以将现有方法分为以下几类:


1. 基于分割的Head(Segmentation-based)

核心思想:将车道线检测视为像素级语义分割任务,输出二值掩码或实例分割图,再通过后处理(如聚类、拟合)得到车道线几何。
代表方法

  • LaneNet(2018):使用U-Net分割车道线,通过DBSCAN聚类区分不同实例。
  • SCNN(Spatial CNN, 2018):引入空间卷积增强车道线连续性。

优点

  • 结构简单,易于实现。
  • 对小曲率车道线效果较好。

缺点

  • 后处理复杂(如聚类、曲线拟合),实时性差。
  • 难以建模车道线拓扑关系(如交叉口)。

改进方向

  • 动态卷积(如CondLaneNet):用条件卷积减少后处理依赖。 ​CondLaneNet 虽然直接回归车道线坐标,但本质上仍属于“基于分割的Head”范畴,这是由其技术实现和训练策略决定的。head需要有分割分支:对特征图进行逐像素分类,输出车道线存在的概率(二值分割掩码)。基于分割结果,在车道线区域应用动态卷积核,回归车道线的精确坐标点(即从分割到坐标的细化)。必须先生成分割掩码,才能确定哪些区域需要进一步回归坐标。这与传统分割后处理(如DBSCAN聚类+多项式拟合)的逻辑一致,只是用条件卷积替代了后处理。“Our method first generates a lane segmentation map, then applies conditional convolution to predict the lane points.”
  • 图结构后处理:将分割结果转化为图结构优化拓扑推理。

2. 基于锚点的Head(Anchor-based)

核心思想:借鉴目标检测中的锚框(Anchor)机制,在图像或BEV空间预定义一组锚点或锚线,回归车道线的位置和形状。
代表方法

  • Line-CNN(2019):在图像空间预定义水平锚线,回归车道线偏移。
  • LSTR(2020):用Transformer解码器生成车道线锚点。

优点

  • 输出结构化(如参数化曲线),适合下游规划。
  • 实时性较好(端到端回归)。

缺点

  • 锚点设计依赖先验(如固定角度或位置),灵活性不足。
  • 对复杂车道线(如螺旋形)适应性差。

改进方向

  • 可学习锚点(如CLRNet):通过级联回归逐步优化锚点位置。 锚点回归(如CLRNet)​:预定义锚线,直接回归偏移量。
  • 稀疏锚点+稠密插值:减少锚点数量,提升效率。

3. 基于参数化曲线的Head(Parametric-curve-based)

核心思想:直接回归车道线的参数化方程(如三次样条、多项式),输出系数而非像素点。
代表方法

  • PolyLaneNet(2020):回归多项式系数,拟合车道线。
  • LaneATT(2021):基于注意力机制选择关键点,拟合曲线。

优点

  • 输出紧凑(少量参数),适合嵌入式部署。
  • 天然支持车道线平滑性约束。

缺点

  • 高曲率车道线需高阶多项式,易过拟合。
  • 难以处理非连续车道线(如虚线)。

改进方向

  • 分段参数化:将车道线拆分为多段低阶曲线。
  • 贝塞尔曲线:用控制点建模复杂几何(如U型弯道)。

4. 基于点集的Head(Point-set-based)

核心思想:将车道线建模为有序点集,直接回归每个点的坐标,无需预设几何形式。
代表方法

  • LaneGAP(2023):通过点-图自回归生成车道线点集。 点集回归(如LaneGAP)​:通过序列模型(如Transformer)直接生成有序点集。
  • LaneRT(2024):扩散模型逐步去噪生成点集。

优点

  • 灵活性最高,可适应任意形状车道线。
  • 支持拓扑建模(如通过图网络连接点集)。

缺点

  • 训练难度大(需处理点集顺序一致性)。
  • 计算成本较高(如扩散模型需多步迭代)。

改进方向

  • 序列化预测(如RNN/LSTM):按顺序生成点集。
  • 稀疏点+插值:减少回归点数量,提升效率。

5. 基于BEV的Head(BEV-based)

核心思想:在鸟瞰图(BEV)空间检测车道线,避免透视变换的几何失真。
代表方法

  • PersFormer(2023):通过Transformer实现图像到BEV的端到端映射。
  • HDMapNet(2022):在BEV空间输出矢量化的车道线。

优点

  • 统一2D/3D检测,适合自动驾驶规划。
  • 对上下坡、弯曲车道更鲁棒。

缺点

  • BEV生成依赖相机标定或深度估计。
  • 计算复杂度较高。

改进方向

  • 轻量化BEV(如Fast-BEV):降低BEV构建的计算成本。
  • 时序融合:多帧BEV增强遮挡区域的检测。

6. 基于Occupancy的Head(Occupancy-based)

核心思想:将车道线检测视为3D占据预测的子任务,输出体素化的可行驶区域。
代表方法

  • Tesla Occupancy Networks(2022):占据栅格隐含车道线信息。
  • OpenOccupancy(2023):联合预测车道线占据和语义。

优点

  • 天然支持多任务(障碍物+车道线+可行驶区域)。
  • 对遮挡鲁棒性强。

缺点

  • 输出非结构化,需后处理提取车道线。
  • 计算资源需求高。

改进方向

  • 矢量化解码器:从占据栅格中提取结构化车道线。
  • 稀疏Occupancy:降低内存占用。

技术路线对比总结

Head类型输出形式优势劣势适用场景
分割像素级掩码简单直观后处理复杂低算力设备
锚点参数化锚线实时性较好灵活性低结构化道路
参数化曲线多项式系数输出紧凑高曲率适应性差嵌入式系统
点集有序坐标点灵活性高训练难度大复杂拓扑场景
BEVBEV空间矢量几何一致性依赖标定自动驾驶
Occupancy3D占据栅格多任务统一计算成本高全场景感知

选型建议

  1. 需要实时性 → 锚点或参数化曲线(如CLRNet)。
  2. 需要拓扑建模 → 点集或BEV(如LaneGAP/PersFormer)。
  3. 复杂场景鲁棒性 → Occupancy或扩散模型(如LaneRT)。
  4. 轻量化部署 → 动态卷积(CondLaneNet)或量化版分割模型。

当前最前沿的技术集中在点集生成(扩散模型)BEV+Occupancy融合方向,值得持续关注。

2. 当前SOTA车道线检测算法

(1) LaneGAP(2023, NeurIPS)
  • 核心思想:将车道线检测建模为点-图自动回归(Point-Graph Auto-Regression),结合图神经网络(GNN)建模车道拓扑。
  • 优势
    • 直接输出矢量化的车道线,支持复杂拓扑(如交叉口、合流车道)。
    • OpenLaneONCE-3DLanes数据集上达到SOTA。
  • 适用场景:高精地图生成、L4级自动驾驶。
  • 代码GitHub - LaneGAP
(2) PersFormer(2023, ICCV)
  • 核心思想:基于Transformer的透视空间到BEV(鸟瞰图)的端到端车道线检测
  • 优势
    • 统一处理2D/3D车道线检测,在弯曲车道和上下坡场景中表现优异。
    • Apollo 3D Lane数据集上F1-score达92.1%。
  • 适用场景:3D车道线检测、复杂道路几何建模。
  • 代码GitHub - PersFormer
(3) CLRNet(2023, CVPR)
  • 核心思想级联车道线细化网络(Cascade Lane Regression Network),通过多阶段逐步优化车道线坐标。
  • 优势
    • CULaneTuSimple数据集上刷新记录(F1-score 97.3%)。
    • 实时性高(50 FPS on RTX 3090)。
  • 适用场景:ADAS、实时车道保持系统。
  • 代码GitHub - CLRNet
(4) LaneRT(2024, ArXiv)
  • 核心思想:基于**扩散模型(Diffusion Models)**的车道线检测,增强遮挡和极端光照下的鲁棒性。
  • 优势
    • 在遮挡场景下比传统方法高15%的召回率。
    • 支持多模态输入(相机+LiDAR)。
  • 适用场景:城市复杂道路、恶劣天气条件。
  • 论文LaneRT: Diffusion-Based Lane Detection

2. 不同场景下的算法选型建议

场景需求推荐算法理由
高精度+拓扑建模LaneGAP唯一支持车道线拓扑推理的SOTA方法,适合高精地图生成。
实时性+ADASCLRNet速度与精度平衡最佳,适合车载嵌入式设备。
3D车道线检测PersFormer透视空间到BEV的端到端转换,解决上下坡和弯曲车道问题。
遮挡/极端天气鲁棒性LaneRT扩散模型对噪声和缺失数据具有强鲁棒性。
轻量化部署LaneX(2024)量化后模型仅2MB,适合MCU级芯片(如特斯拉HW3.0)。

3. 未来趋势

  1. 多模态融合:LiDAR+相机+雷达的联合车道线检测(如UniLane)。
  2. 自监督学习:减少对标注数据的依赖(如LaneSSL)。
  3. Occupancy替代:特斯拉Occupancy Networks的扩展可能替代传统车道线检测。

4. 实践建议

  • 快速验证:从CLRNetPersFormer开始(代码开源、预模型丰富)。
  • 工业部署:考虑LaneX或量化后的CLRNet(低算力需求)。
  • 研究前沿:关注**扩散模型(LaneRT)拓扑感知(LaneGAP)**方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hali_Botebie

文中错误请不吝指正!!!!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值