Model Agnostic Methods概念理解

问题描述

今天看论文看到了这样一句话:

This lack of a gradient also allows MLSH to be learning-method agnostic.

 不明白什么叫learning-method agnostic,百度上也没有很好的回答。于是将这个概念记录下来供后续查看。

具体解释

根据参考链接,该短语表示与模型无关,即可以将模型看成一个黑盒子,可以把任何模型放在这个黑盒子的位置上。该短语最常用在可解释性AI领域,当然便于理解,以一些广为人知的评估方法为例,如acurracy,precision, recall and MSE等,都是与模型无关的方法(Model Agnostic Methods)。

更多链接中的叙述如下: 

参考链接

[1] ​​​​​​https://towardsdatascience.com/what-are-model-agnostic-methods-387b0e8441ef

### ### 神经网络输出特征分析 神经网络的输出特征可以通过多种方法和技术进行深入分析,这些技术可以帮助理解模型的行为以及其决策过程。以下是几种常用的方法、工具和案例。 #### 数据可视化 数据可视化是一种直观的方式,用于观察神经网络的输出特征。通过将高维空间中的数据投影到二维或三维平面上,可以更清晰地了解不同类别之间的分布情况[^1]。常用的降维算法包括t-SNE 和PCA。 ```python from sklearn.manifold import TSNE import matplotlib.pyplot as plt def visualize_features(features, labels): tsne = TSNE(n_components=2, random_state=0) features_2d = tsne.fit_transform(features) plt.scatter(features_2d[:, 0], features_2d[:, 1], c=labels, cmap='viridis') plt.show() ``` #### 激活映射 (Activation Mapping) 激活映射展示了特定层中各个神经元对于输入样本的响应程度。这种方法有助于识别哪些部分的输入对最终预测贡献最大[^2]。 #### 反向传播梯度 (Gradient-based Methods) 反向传播梯度方法计算损失函数相对于输入图像的导数,从而揭示影响分类结果的关键区域。例如Grad-CAM就是一种基于梯度的技术,它能够生成热力图来突出显示重要部位[^3]。 ```python import numpy as np import tensorflow as tf grad_model = tf.keras.models.Model([model.inputs], [model.get_layer('target_layer').output, model.output]) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(img_array) loss = predictions[:, predicted_class] output = conv_outputs[0] grads = tape.gradient(loss, conv_outputs)[0] gate_f = tf.cast(output > 0, 'float32') gate_r = tf.cast(grads > 0, 'float32') guided_grads = gate_f * gate_r * grads weights = tf.reduce_mean(guided_grads, axis=(0, 1)) cam = np.ones(output.shape[0:2], dtype=np.float32) for i, w in enumerate(weights): cam += w * output[:, :, i] cam = cv2.resize(cam.numpy(), (img_size, img_size)) cam = np.maximum(cam, 0) heatmap = (cam - cam.min()) / (cam.max() - cam.min()) ``` #### 使用解释性AI框架 一些专门设计用来帮助理解和调试机器学习模型的库也提供了丰富的功能支持上述操作。比如SHAP(Shapley Additive exPlanations)、LIME(Local Interpretable Model-agnostic Explanations)等都是不错的选择[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值