Eigen 库的使用以及计算矩阵N次幂(C++实现)


前言

在项目中用到Eigen相关运算,并在此纪录一下Eigen的学习和使用情况。


一、Eigen库常用函数

#include <Eigen/Eigen>
#include <Eigen/Dense>   
// 基本用法  以下小写字母代表向量 ,大写字母代表矩阵
// Eigen          // Matlab           // 注释  
x.size()          // length(x)        // 向量的长度  
C.rows()          // size(C,1)        // 矩阵的行数  
C.cols()          // size(C,2)        // 矩阵的列数  
x(i)              // x(i+1)           // 访问向量元素(Matlab的下标从1开始计数)  
C(i,j)            // C(i+1,j+1)       // 访问矩阵元素  
                  //  Eigen的索引从0开始
    
A << 1, 2, 3,     // 初始化A,元素也可以是矩阵,先按列堆叠,再按行堆叠。  
     4, 5, 6,       
     7, 8, 9;       
B << A, A, A;     // B 是3个A水平排列  
A.fill(10);       // 将A的所有元素填充为10  
  
// Eigen                                    // Matlab                       注释  
MatrixXd::Identity(rows,cols)               // eye(rows,cols)               //单位矩阵  
C.setIdentity(rows,cols)                    // C = eye(rows,cols)           //单位矩阵  
MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)             //全零矩阵  
C.setZero(rows,cols)                        // C = zeros(rows,cols)         //全零矩阵  
MatrixXd::Ones(rows,cols)                   // ones(rows,cols)              //全一矩阵  
C.setOnes(rows,cols)                        // C = ones(rows,cols)          //全一矩阵  
MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1          //MatrixXd::Random 返回范围为(-1, 1)的均匀分布的随机数  
C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1      //返回范围为(-1, 1)的均匀分布的随机数  
VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'     //返回size个等差数列,第一个数为low,最后一个数为high  
v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)' //返回size个等差数列,第一个数为low,最后一个数为high  
VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi                  //以step为步长的等差数列。((hi-low)/step)+1为个数  
                    low,low+step*(size-1))  //  
  
  
// Matrix 切片和块。下面列出的所有表达式都是可读/写的。  
// 使用模板参数更快(如第2个)。注意:Matlab是的下标是从1开始的。  
// Eigen                           // Matlab                        // 注释  
x.head(n)                          // x(1:n)                        //前n个元素  
x.head<n>()                        // x(1:n)                        //前n个元素  
x.tail(n)                          // x(end - n + 1: end)           //倒数n个元素  
x.tail<n>()                        // x(end - n + 1: end)           //倒数n个元素  
x.segment(i, n)                    // x(i+1 : i+n)                  //切片  
x.segment<n>(i)                    // x(i+1 : i+n)                  //切片  
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols) //块  
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols) //块  
P.row(i)                           // P(i+1, :)                     //第i行  
P.col(j)                           // P(:, j+1)                     //第j列  
P.leftCols<cols>()                 // P(:, 1:cols)                  //前cols列  
P.leftCols(cols)                   // P(:, 1:cols)                  //前cols列  
P.middleCols<cols>(j)              // P(:, j+1:j+cols)              //中间cols列  
P.middleCols(j, cols)              // P(:, j+1:j+cols)              //中间cols列  
P.rightCols<cols>()                // P(:, end-cols+1:end)          //后cols列  
P.rightCols(cols)                  // P(:, end-cols+1:end)          //后cols列  
P.topRows<rows>()                  // P(1:rows, :)                  //前rows行  
P.topRows(rows)                    // P(1:rows, :)                  //前rows行  
P.middleRows<rows>(i)              // P(i+1:i+rows, :)              //中间rows行  
P.middleRows(i, rows)              // P(i+1:i+rows, :)              //中间rows行  
P.bottomRows<rows>()               // P(end-rows+1:end, :)          //最后rows行  
P.bottomRows(rows)                 // P(end-rows+1:end, :)          //最后rows行  
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)             //左上角块  
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)     //右上角块  
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)     //左下角块  
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end) //右下角块  
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)                 //左上角块  
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)         //右上角块  
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)         //左下角块  
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end) //右下角块  
  
  
// 特别说明:Eigen的交换函数进行了高度优化  
// Eigen                           // Matlab  
R.row(i) = P.col(j);               // R(i, :) = P(:, j)  
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1]) //交换列  
  
  
// Views, transpose, etc;  
// Eigen                           // Matlab  
R.adjoint()                        // R'                    // 共轭转置  
R.transpose()                      // R.' or conj(R')       // 可读/写 转置  
R.diagonal()                       // diag(R)               // 可读/写 对角元素  
x.asDiagonal()                     // diag(x)               // 对角矩阵化  
R.transpose().colwise().reverse()  // rot90(R)              // 可读/写 逆时针旋转90度  
R.rowwise().reverse()              // fliplr(R)             // 水平翻转  
R.colwise().reverse()              // flipud(R)             // 垂直翻转  
R.replicate(i,j)                   // repmat(P,i,j)         // 复制矩阵,垂直复制i个,水平复制j个  
  
  
// 四则运算,和Matlab相同。但Matlab中不能使用*=这样的赋值运算符  
// 矩阵 - 向量    矩阵 - 矩阵      矩阵 - 标量  
y  = M*x;          R  = P*Q;        R  = P*s;  
a  = b*M;          R  = P - Q;      R  = s*P;  
a *= M;            R  = P + Q;      R  = P/s;  
                   R *= Q;          R  = s*P;  
                   R += Q;          R *= s;  
                   R -= Q;          R /= s;  
  
  
// 逐像素操作Vectorized operations on each element independently  
// Eigen                       // Matlab        //注释  
R = P.cwiseProduct(Q);         // R = P .* Q    //逐元素乘法  
R = P.array() * s.array();     // R = P .* s    //逐元素乘法(s为标量)  
R = P.cwiseQuotient(Q);        // R = P ./ Q    //逐元素除法  
R = P.array() / Q.array();     // R = P ./ Q    //逐元素除法  
R = P.array() + s.array();     // R = P + s     //逐元素加法(s为标量)  
R = P.array() - s.array();     // R = P - s     //逐元素减法(s为标量)  
R.array() += s;                // R = R + s     //逐元素加法(s为标量)  
R.array() -= s;                // R = R - s     //逐元素减法(s为标量)  
R.array() < Q.array();         // R < Q         //逐元素比较运算  
R.array() <= Q.array();        // R <= Q        //逐元素比较运算  
R.cwiseInverse();              // 1 ./ P        //逐元素取倒数  
R.array().inverse();           // 1 ./ P        //逐元素取倒数  
R.array().sin()                // sin(P)        //逐元素计算正弦函数  
R.array().cos()                // cos(P)        //逐元素计算余弦函数  
R.array().pow(s)               // P .^ s        //逐元素计算幂函数  
R.array().square()             // P .^ 2        //逐元素计算平方  
R.array().cube()               // P .^ 3        //逐元素计算立方  
R.cwiseSqrt()                  // sqrt(P)       //逐元素计算平方根  
R.array().sqrt()               // sqrt(P)       //逐元素计算平方根  
R.array().exp()                // exp(P)        //逐元素计算指数函数  
R.array().log()                // log(P)        //逐元素计算对数函数  
R.cwiseMax(P)                  // max(R, P)     //逐元素计算R和P的最大值  
R.array().max(P.array())       // max(R, P)     //逐元素计算R和P的最大值  
R.cwiseMin(P)                  // min(R, P)     //逐元素计算R和P的最小值  
R.array().min(P.array())       // min(R, P)     //逐元素计算R和P的最小值  
R.cwiseAbs()                   // abs(P)        //逐元素计算R和P的绝对值  
R.array().abs()                // abs(P)        //逐元素计算绝对值  
R.cwiseAbs2()                  // abs(P.^2)     //逐元素计算平方  
R.array().abs2()               // abs(P.^2)     //逐元素计算平方  
(R.array() < s).select(P,Q );  // (R < s ? P : Q)                             //根据R的元素值是否小于s,选择P和Q的对应元素  
R = (Q.array()==0).select(P,A) // R(Q==0) = P(Q==0) R(Q!=0) = P(Q!=0)         //根据Q中元素等于零的位置选择P中元素  
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)     // 对P中的每个元素应用func函数  
  
  
// Reductions.  
int r, c;  
// Eigen                  // Matlab                 //注释  
R.minCoeff()              // min(R(:))              //最小值  
R.maxCoeff()              // max(R(:))              //最大值  
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); //计算最小值和它的位置  
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); //计算最大值和它的位置  
R.sum()                   // sum(R(:))              //求和(所有元素)  
R.colwise().sum()         // sum(R)                 //按列求和  
R.rowwise().sum()         // sum(R, 2) or sum(R')'  //按行求和  
R.prod()                  // prod(R(:))                 //累积  
R.colwise().prod()        // prod(R)                    //按列累积  
R.rowwise().prod()        // prod(R, 2) or prod(R')'    //按行累积  
R.trace()                 // trace(R)                   //迹  
R.all()                   // all(R(:))                  //是否所有元素都非零  
R.colwise().all()         // all(R)                     //按列判断,是否该列所有元素都非零  
R.rowwise().all()         // all(R, 2)                  //按行判断,是否该行所有元素都非零  
R.any()                   // any(R(:))                  //是否有元素非零  
R.colwise().any()         // any(R)                     //按列判断,是否该列有元素都非零  
R.rowwise().any()         // any(R, 2)                  //按行判断,是否该行有元素都非零  
  
  
// 点积,范数等  
// Eigen                  // Matlab           // 注释  
x.norm()                  // norm(x).         //范数(注意:Eigen中没有norm(R))  
x.squaredNorm()           // dot(x, x)        //平方和(注意:对于复数而言,不等价)  
x.dot(y)                  // dot(x, y)        //点积  
x.cross(y)                // cross(x, y)      //交叉积,需要头文件 #include <Eigen/Geometry>  
  
  
 类型转换  
// Eigen                  // Matlab             // 注释  
A.cast<double>();         // double(A)          //变成双精度类型  
A.cast<float>();          // single(A)          //变成单精度类型  
A.cast<int>();            // int32(A)           //编程整型  
A.real();                 // real(A)            //实部  
A.imag();                 // imag(A)            //虚部  
// 如果变换前后的类型相同,不做任何事情。  
  
  
// 注意:Eigen中,绝大多数的涉及多个操作数的运算都要求操作数具有相同的类型  
MatrixXf F = MatrixXf::Zero(3,3);  
A += F;                // 非法。Matlab中允许。(单精度+双精度)  
A += F.cast<double>(); // 将F转换成double,并累加。(一般都是在使用时临时转换)  
  
  
// Eigen 可以将已存储数据的缓存 映射成 Eigen矩阵  
float array[3];  
Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10  
int data[4] = {1, 2, 3, 4};  
Matrix2i mat2x2(data);                    // 将 data 复制到 mat2x2  
Matrix2i::Map(data) = 2*mat2x2;           // 使用 2*mat2x2 覆写data的元素   
MatrixXi::Map(data, 2, 2) += mat2x2;      // 将 mat2x2 加到 data的元素上 (当编译时不知道大小时,可选语法) 

二、Eigen块运算

在Eigen中最基本的块操作运算是用.block()完成的。提取的子矩阵同样分为动态大小和固定大小。
Eigen中的块运算有两种代码实现方式
代码如下(示例):

//block of size (p,q) ,starting at (i,j)。
//(p,q)为矩阵块大小,(i,j)为矩阵起始点位置  ,Eigen库中的索引从0开始
matrix.block(i,j,p,q);
matrix.block<p,q>(i,j);

需要注意的是,在Eigen中,索引是从0开始。所有的操作方法都可以适用于Array.同样使用固定大小的操作方式在小型矩阵运算时更加的快,但要求在编译时就要知道矩阵的大小,通常通过Resize()对矩阵进行初始化操作。
示例代码如下:

Eigen::MatrixXd Matrix;     //定义矩阵Matrix
Matrix.resize(n,m);          //初始化矩阵Matrix大小为n*m

矩阵块操作示例:

#include <iostream>
#include "Eigen/Eigen"
#include "Eigen/Dense"

using namespace std;
using namespace Eigen;

int main()
{
    MatrixXf m;
    m.resize(4,4);
    m<< 1,2,3,4,
        5,6,7,8,
        9,10,11,12,
        13,14,15,16;
    cout<<"Block in the middle"<<endl;
    //矩阵块大小为2*2 ,起始索引点为 (1,1)
    cout<<m.block<2,2>(1,1)<<endl<<endl;     
    for(int i = 1;i <= 3;++i)
    {
        cout<<"Block of size "<<i<<"x"<<i<<endl;
        cout<<m.block(0,0,i,i)<<endl<<endl;
    }
}


代码执行结果如下:

Block in the middle
 6  7
10 11

Block of size 1x1
1

Block of size 2x2
1 2
5 6

Block of size 3x3
 1  2  3
 5  6  7
 9 10 11

三、矩阵N次幂

代码如下(示例):

#include <Eigen/Eigen>
#include <Eigen/Dense>
#include <iostream>

using namespace std ;
using namespace Eigen;

Eigen::MatrixXd multi_matrix(Eigen::MatrixXd Matrix_1, Eigen::MatrixXd Matrix_2, const int n)
//两个方阵相乘,n为方阵维度
{
    Eigen::MatrixXd Matrix;
    Matrix.resize(Matrix_1.rows(), Matrix_1.cols());
    Matrix = Eigen::MatrixXd::Zero(Matrix_1.rows(), Matrix_1.cols());
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            //Matrix(i,j) = 0;
            for (int k = 0; k < n; k++) {
                Matrix(i, j) += Matrix_1(i, k) * Matrix_2(k, j);
            }
        }
    }

    return Matrix;
}

Eigen::MatrixXd calc_power(Eigen::MatrixXd Matrix, const int m, const int n)
//计算次幂 ,m> 0;
//m 为次方数  n为方阵维度
{
    if (m == 1)
        return Matrix;
    else
    {
        Eigen::MatrixXd Matrix_copy;   //复制当前矩阵
        Matrix_copy.resize(Matrix.rows(), Matrix.cols());
        Matrix_copy = Matrix;
        // Matrix_copy = Eigen::MatrixXd::Zero(Matrix.rows(), Matrix.cols());
        for (int i = 0; i < m - 1; i++)
        {
            Matrix = multi_matrix(Matrix, Matrix_copy, n);
        }
        return Matrix;
    }
}

int main()
{
	 Eigen::MatrixXd A, B;
	 A.resize(2,2);
	 A << 1,2,
	      3,4;
	 B = calc_power(A,3,2);  //3次方 ,2为方阵维度
	 cout << "A的" << m << "次方为:" << B << endl;
	 return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值