能观标准型与能控标准型概念

1 能控性和能观性的基本概念

1.1 能控性的基本概念

能控性反应的是系统的输入对状态的制约能力,也就是说,系统中的状态变量能不能完全由输入去影响和控制,由任意的起点到达终点。

这里面就涉及到两个内容,能控性和能达性,虽然这两个内容在连续线性定常系统里面是等价的,但是实际上在初学的时候,更多的是学习能控性。

关于上述两个内容的关系和区别,定义如下:

  1. 能控性指的是,从任意的初始状态,都能通过控制输入来到达所有指定的终点。
  2. 能达性指的是,从所有指定的初始状态,都能通过控制输入来到达任意的终点。

1.2 能观性的基本概念

能观性反应的是从外部对系统内部的观测能力,也就是说,系统中的状态变量能不能完全由输出来反映。

同样的,这里涉及到两个内容,能观性和能构性,在连续线性定常系统里是等价的,来看一下两者的定义:

  1. 能观性指的是,输入给定,任意的初始状态都能被系统的输出唯一确定。
  2. 能构性指的是,输入给定,任意的最终状态都能被系统的输出唯一确定。

上面这些听起来很玄学,区别也不是很容易掌握,还好初步学习的要求以理解能控性和能观性即可。

能控性和能观性的判断方法是一大学习的重点,在之后很多学习的内容中都会使用到。例如,线性变换、线性分解、极点配置等。

2 线性定常系统的能控性判据

2.1 格拉姆矩阵判据

2.2 秩判据

2.3 对角线规范型判据

2.4 约当规范型判据

2.5 能控标准型

3 线性定常系统的能观性判据

3.1 格拉姆矩阵判据

3.2 秩判据

3.3 对角线规范型判据

3.5 能观标准型

### 能标准型标准型的转换方法及其相互关系 在制系统的分析和设计过程中,状态空间表示法是一种非常有效的工具。对于线性定常系统而言,可以通过变换矩阵将同一个系统描述成不同的形式,其中最常用的是能标准型和能标准型。 #### 1. 能标准型到能标准型的转换 假设给定了一个单输入-单输出(SISO)线性时不变(LTI)系统的能标准型: \[ \dot{x}(t)=Ax(t)+Bu(t),\quad y=Cx(t)\] 这里 \(A\) 是 n×n 的系数矩阵;\(B=[0, ..., 0, 1]^T\) 和 \(C=[c_1,c_2,...,c_n]\),则该系统的传递函数可以写为: \[ G(s)=C(sI-A)^{-1}+\cdots+a_1s+a_0}\] 为了将其转化为对应的能标准型,需要找到合适的相似变换矩阵 P ,使得新的状态向量 z=Px 下的状态方程变为如下所示的形式: \[ \begin{aligned} &\dot{z}=Az+Du \\ &y=Fz \end{aligned}\] 此时 A 矩阵应该具有特定结构以便于察者的设计。具体做法是通过求解 Lyapunov 方程来获得所需的变换矩阵P[^1]。 ```matlab % MATLAB code to transform controllable canonical form into observable one. syms s; A = sym('a', [n,n]); % Define symbolic matrix A with size nxn B = zeros(n,1); B(end) = 1; % Controllability vector b as column vector C = sym(['c' num2str(1:n)]); G_s = C*(inv(diag(sym('s'))*eye(size(A))-A))*B; % Calculate the observability matrix O from transfer function coefficients O = vander([roots(poly(G_s))]); % Transformation Matrix P is computed by solving Sylvester's equation AP-PD=-BO' P = lyap(A,-transpose(O)*diag(C)); disp(P); ``` #### 2. 关系说明 当实现了上述转换之后,在新坐标下的动态特性保持不变,即两个不同表征方式所代表的实际物理过程完全相同。然而值得注意的是,尽管这两种形式之间存在一一对应的关系,但在实际应用中往往更倾向于选择一种更适合当前需求的表现形式来进行进一步的研究或实现具体的制器设计目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值