自动控制原理——伯德图

本文详细介绍了伯德图在电路稳定性分析中的重要性,包括如何通过增益和相位裕度评估系统稳定性,以及极点和零点的作用。还提到实际应用中如何使用环路分析仪检测开关电源的稳定性标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伯德图因为其直观,用于判断稳定性原理相对简单,广泛应用于确定控制系统的稳定性,比如用在设计和分析开关电源的反馈回路。

电路的稳定性描述的是对输入的不同频率的干扰信号的抑制性能。

伯德图描述了在电路中输入信号频率变化对输出信号的影响,表达了控制系统输出信号对输入信号频率响应两方面的变化:增益和相位。

R&S®Essentials:Understanding Bode plots

上面就是一个伯德图,上图描述增益(幅值)随着频率变化的响应,横坐标是频率,以对数尺度形式显示,纵坐标是增益,单位为分贝dB。下图描述相位随着频率变化的响应,横坐标与上图一样,纵坐标是相位,单位为度degree。

增益的单位分贝,简单可以理解为输出信号比输入信号的放大倍数。电压分贝和放大倍数有直接的对应关系,用y表示电压分贝,用x表示放大倍数,y=20lg(x)。从下表中可以直观看出dB单位与放大倍数的关系。对应上图的增益(幅值)响应,0dB水平线及以下区域表示系统没有放大作用。分贝对于高数量级的放大倍数可以有效简化书写。

Persama 《dB单位与放大倍数关系》

增益裕度和相位裕度

在增益为0dB处,对应穿越频率,对应着相位裕度。相位裕度是相位响应曲线在穿越频率点与-180度之间的相位差。

在相位为180度处,对应着增益裕度。增益裕度是增益响应曲线在相位为-180度的频率点与0dB之间的增益差。

相位裕度、增益裕度表征着系统与不稳定性的“距离”。相位裕度、增益裕度越大,说明控制系统越强健,越稳定。

当然,如果相位裕度过大,意味着系统的响应速度慢,所以需要将相位裕度调整到合理范围内。

R&S®Essentials:Understanding Bode plots

系统稳定性判断

下图在穿越频率处(0dB),相位裕度为45°。在相位为-180°处,增益裕度为9,可判断为稳定系统。

R&S®Essentials:Understanding Bode plots

下图在穿越频率处(0dB),相位裕度为35°。在相位为-180°处,增益裕度为-13,可判断为不稳定系统。

零点和极点

在伯德图实际应用中会经常碰到极点和零点的概念。

首先了解一下,极点和零点指的都是某个频率点。

当某频率信号输入时,电路系统输出幅度发生了衰减(增益衰减3dB),输出信号相位产生滞后(相位滞后45°),这个频率点就是极点Pole。在极点之后,随着频率增大,输出幅度进一步衰减,在伯德图上表现为在极点之后,增益按照-20dB/十倍频衰减。在极点之后,随着频率增大,相位进一步滞后,在伯德图上表现为在极点之后,相位按照-45°/十倍频衰减。

如果电路系统中有两个极点,随着频率增大,增益衰减,相位滞后至-180°,可能导致电路系统振荡。所以在大多数情况,我们并不希望存在极点。但是由于现实的元器件是有寄生参数的,所以极点是天然存在的。为避免电路输出振荡,我们一般人为地增加零点,所谓的频率补偿就是做这个事情。

零点Zero的作用就是抵消极点Pole的作用,矫正输出信号衰减的趋势,矫正相位滞后的趋势。在零点之后,随着频率增大,输出幅度进一步增大,在伯德图上表现为在零点之后,增益按照+20dB/十倍频增大。在零点之后,随着频率增大,相位进一步超前,在伯德图上表现为在零点之后,相位按照+45°/十倍频衰减。

Texas Instruments,AN-1148 Linear Regulators:Theory of Operation and Compensation

在下图中,零点的作用就体现在1kHz频率位置,零点抵消了前一个极点(100Hz)引起的增益衰减的作用。

Texas Instruments,AN-1148 Linear Regulators:Theory of Operation and Compensation

在传递函数中,极点会使得传递函数的分母为零,零点会使得传递函数的分子为零,换句话说极点会使得传递函数数学计算结果变为“极”大,零点会使得传递函数数学计算结果变为“零”。比如传递函数是H(s)=(s+a)/(s+b),其中-b就是极点,-a就是零点。

实际应用

实际我们可以手绘伯德图,也可以使用电脑软件或仪器来绘制伯德图。

可以利用环路分析仪分析开关电源的稳定性,其原理是给开关电源电路注入一个频率变化的正弦信号作为干扰信号,测量开关电源在频域上的特性,通过分析穿越频率、增益裕度和相位裕度来判断环路是否稳定。

通常在实际应用中,我们要求系统伯德图的相位裕度>45°,建议相位裕度在45°~80°之间,增益裕度>10dB,穿越频率的斜率-20dB/十倍频,此时可认为系统是强健稳定的。

### 绘制Bode的方法 在 MATLAB 中,可以通过 `bode` 函数来绘制系统的 Bode 。对于连续系统和离散系统,方法略有不同。 #### 连续系统的 Bode 绘制 如果要绘制的是一个典型的线性连续系统的 Bode ,则可以按照如下方式操作: 定义传递函数并调用 `bode` 函数完成绘[^2]。 ```matlab % 定义连续系统的传递函数 G(s) num = [1]; % 分子系数 den = [1 2 1]; % 分母系数 G = tf(num, den); % 使用 bode 函数绘制 Bode figure; bode(G); grid on; % 添加网格以便观察更清晰 ``` 上述代码创建了一个二阶低通滤波器的传递函数 \( \frac{1}{s^2 + 2s + 1} \),并通过 `bode` 命令生成其频率响应曲线。 --- #### 离散系统的 Bode 绘制 针对离散系统(如重复控制器),由于它本质上是一个采样数据系统,因此需要特别注意采样时间和离散化过程。以下是具体实现步骤: 首先构建离散化的传递函数模型,并通过 `bode` 函数进行分析[^1]。 ```matlab % 参数设置 Ts = 0.01; % 设定采样周期 Ts (单位秒) % 构建离散时间传递函数 H(z) num_z = [1 -1]; % 数字域分子多项式 den_z = [1 -0.9]; % 数字域分母多项式 H = tf(num_z, den_z, Ts); % 调用 bode 函数绘制离散系统的 Bode figure; bode(H); title('Discrete-Time System Bode Plot'); grid on; ``` 此代码片段展示了如何基于给定的 Z 变换表达式建立离散时间动态系统对象,并利用内置功能显示幅频特性和相位特性。 需要注意的一点是,在实际应用过程中可能还需要考虑额外因素比如延迟环节或者非最小相位行为的影响等。 --- #### 自动帮助查询 另外值得注意的是,当不确定某些细节时可以直接向软件寻求在线支持文档说明。例如键入指令 `>> help bode` 后查阅返回的结果页面中的相关内容链接获取权威解释材料。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值