旺纳姆能控规范形II 龙伯格能控规范形II (步骤与例子)

本文详细介绍了旺纳姆能控规范形II和龙伯格能控规范形II的转化过程,通过三阶系统为例,展示了如何判断能控性、计算转换阵及其逆,以及如何构建新的转换阵,最终实现系统的能控规范形转化。并通过实际例子,演示了两种规范形的具体计算步骤,提供了MATLAB程序作为辅助理解。
摘要由CSDN通过智能技术生成

针对MIMO LTI(多输入多输出线性时不变系统):

x ˙ = A x + B u y = C x \begin{aligned} & \dot x = A x + Bu \\ & y = C x \end{aligned} x˙=Ax+Buy=Cx

避免过于抽象而不失一般性,以三阶系统为例。


一、旺纳姆能控规范形II

步骤1: 判断能控性。计算能控性矩阵

Q c = [ B A B A 2 B ] Q_c = [\begin{array}{ccc} B & AB & A^2B \end{array}] Qc=[BABA2B]

如果 r a n k ( Q c ) = n = 3 {\rm rank}(Q_c) = n = 3 rank(Qc)=n=3,系统能化为能控规范形,继续计算;否则,停止。

步骤2:计算转换阵。将 B B B使用列向量表示

B = [ b 1 b 2 b 3 ] B = [\begin{array}{ccc} b_1 & b_2 & b_3 \end{array}] B=[b1b2b3]

按照列搜索方式,即按照
b 1 A b 1 A 2 b 1 ∣ b 2 A b 2 A 2 b 2 ∣ b 3 A b 3 A 2 b 3 \begin{array}{ccc}b_1&Ab_1& A^2b_1&|& b_2&Ab_2&A^2b_2& | \quad b_3& Ab_3&A^2b_3\end{array} b1Ab1A2b1b2Ab2A2b2b3Ab3A2b3

的顺序搜索 n = 3 n=3 n=3个线性无关的向量,组成变换阵 T T T。同时,关于 b 1 , b 2 , b 3 b_1,b_2, b_3 b1,b2,b3组的能控性指数分别记为 v 1 , v 2 , v 3 v_1,v_2, v_3 v1,v2,v3

不妨假设搜索得到3个线性无关的向量为 b 1 , A b 1 , b 2 b_1, Ab_1, b_2 b1,Ab1,b2,则

T = [ b 1 A b 1 b 2 ] T = [\begin{array}{ccc} b_1 & Ab_1 & b_2 \end{array}] T=[b1Ab1b2]

此时, v 1 = 2 , v 2 = 1 , v 3 = 0 v_1 = 2, v_2 = 1, v_3 = 0 v1=2,v2=1,v3=0

步骤3:计算 T − 1 T^{-1} T1,并按行向量对其分块,下标与能控性指数相对应。根据假设数据,易得(注:中间的横线是分割线)

T − 1 = [ e 11 T e 12 T — e 21 T ] T^{-1} = \left[\begin{array}{ccc} e_{11}^T \\ e_{12}^T \\—\\ e_{21}^T \end{array} \right] T1=e11Te12Te21T

步骤4:取每个块阵中的末行 e 1 v 1 , e 2 v 2 , . . . e_{1v_1}, e_{2v_2}, ... e1v1,e2v2,... 按照一定顺序组成新的变换阵 S S S

S = [ e 1 v 1 T e 1 v 1 T A e 1 v 1 A 2 . . . — e 2 v 2 T . . . ] S = \left[\begin{array}{ccc} e_{1v_1}^T \\ e_{1v_1}^TA \\ e_{1v_1}A^2 \\... \\—\\ e_{2v_2}^T \\...\end{array} \right] S=e1v1Te1v1TAe1v1A2...e2v2T...

按照假设的数据,得

S = [ e 12 T e 12 T A e 21 T ] S = \left[\begin{array}{ccc} e_{12}^T \\ e_{12}^TA \\e_{21}^T \end{array} \right] S=e12Te12TAe21T

步骤5:计算

A c = S A S − 1 B c = S B C c = C S − 1 \begin{aligned} &A_c = SAS^{-1} \\ &B_c = SB \\ &C_c = CS^{-1} \end{aligned} Ac=SAS1Bc=SBCc=CS1


二、龙伯格能控规范形II

龙伯格能控规范形步骤基本与旺纳姆能控规范形顺序一致,只是第二步使用行搜索的方式(注意:仅仅是搜索方式不同,而搜索得到的向量排列规则相同。例如搜索到 b 1 , b 2 , A b 1 b_1, b_2, Ab_1 b1,b2,Ab1,两种规范形都是按照 b 1 , A b 1 , b 2 b_1, Ab_1, b_2 b1,Ab1,b2的顺序得到转换阵 T T T 而不是 b 1 , b 2 , A b 1 b_1, b_2, Ab_1 b1,b2,Ab1 的顺序)。

具体如下:

步骤1: 判断能控性。计算能控性矩阵

Q c = [ B A B A 2 B ] Q_c = [\begin{array}{ccc} B & AB & A^2B \end{array}] Qc=[BABA2B]

如果 r a n k ( Q c ) = n = 3 {\rm rank}(Q_c) = n = 3 rank(Qc)=n=3,系统能化为能控规范形,继续计算;否则,停止。

步骤2:计算转换阵。将 B B B使用列向量表示

B = [ b 1 b 2 b 3 ] B = [\begin{array}{ccc} b_1 & b_2 & b_3 \end{array}] B=[b1b2b3]

按照列搜索方式,即按照
b 1 b 2 b 3 ∣ A b 1 A b 2 A b 3 ∣ A 2 b 1 A 2 b 2 A 2 b 3 \begin{array}{ccc}b_1& b_2 & b_3 &|& Ab_1 & Ab_2& Ab_3& | & A^2b_1& A^2b_2&A^2b_3\end{array} b1b2b3Ab1Ab2Ab3A2b1A2b2A2b3

的顺序搜索 n = 3 n=3 n=3个线性无关的向量,组成变换阵 T T T。同时,关于 b 1 , b 2 , b 3 b_1,b_2, b_3 b1,b2,b3组的能控性指数分别记为 v 1 , v 2 , v 3 v_1,v_2, v_3 v1,v2,v3

不妨假设搜索得到3个线性无关的向量为 b 1 , b 2 , A b 1 b_1, b_2, Ab_1 b1,b2,Ab1,则(并不按照搜索结果直接排列!)

T = [ b 1 A b 1 b 2 ] T = [\begin{array}{ccc} b_1 & Ab_1 & b_2 \end{array}] T=[b1Ab1b2]

此时, v 1 = 2 , v 2 = 1 , v 3 = 0 v_1 = 2, v_2 = 1, v_3 = 0 v1=2,v2=1,v3=0

步骤3:计算 T − 1 T^{-1} T1,并按行向量对其分块,下标与能控性指数相对应。根据假设数据,易得(注:中间的横线是分割线)

T − 1 = [ e 11 T e 12 T — e 21 T ] T^{-1} = \left[\begin{array}{ccc} e_{11}^T \\ e_{12}^T \\—\\ e_{21}^T \end{array} \right] T1=e11Te12Te21T

步骤4:取每个块阵中的末行 e 1 v 1 , e 2 v 2 , . . . e_{1v_1}, e_{2v_2}, ... e1v1,e2v2,... 按照一定顺序组成新的变换阵 S S S

S = [ e 1 v 1 T e 1 v 1 T A e 1 v 1 A 2 . . . — e 2 v 2 T . . . ] S = \left[\begin{array}{ccc} e_{1v_1}^T \\ e_{1v_1}^TA \\ e_{1v_1}A^2 \\... \\—\\ e_{2v_2}^T \\...\end{array} \right] S=e1v1Te1v1TAe1v1A2...e2v2T...

按照假设的数据,得

S = [ e 12 T e 12 T A e 21 T ] S = \left[\begin{array}{ccc} e_{12}^T \\ e_{12}^TA \\e_{21}^T \end{array} \right] S=e12Te12TAe21T

步骤5:计算

A c = S A S − 1 B c = S B C c = C S − 1 \begin{aligned} &A_c = SAS^{-1} \\ &B_c = SB \\ &C_c = CS^{-1} \end{aligned} Ac=SAS1Bc=SBCc=CS1


三、例子

给定系统

x ˙ = [ − 1 − 4 − 2 0 6 − 1 1 7 − 1 ] x + [ 2 0 0 0 1 1 ] u \dot x =\left [ \begin{array}{ccc} -1 & -4 & -2 \\ 0 & 6 & -1 \\ 1 & 7 & -1 \end{array}\right ] x + \left [ \begin{array}{ccc} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{array}\right ] u x˙=101467211x+201001u

分别转化为旺纳姆规范形II和龙伯格规范形II。


3.1 旺纳姆规范形II

步骤1:计算能控性。

Q c = [ B A B A 2 B ] = [ 2 0 − 4 − 2 6 8 0 0 − 1 − 1 − 7 − 5 1 1 1 − 1 − 12 − 8 ] \begin{aligned} Q_c &= [\begin{array}{ccc} B & AB & A^2B \end{array}] \\ &=\left [ \begin{array}{ccc} 2&0&-4&-2&6&8 \\ 0 & 0 & -1 & -1 &-7 & -5 \\ 1 & 1 & 1 & -1 & -12 & -8 \end{array}\right ] \end{aligned} Qc=[BABA2B]=2010014112116712858

由于 r a n k ( Q c ) = 3 {\rm rank}(Q_c) = 3 rank(Qc)=3,继续下一步。

步骤2:按照行搜索,得到 b 1 , A b 1 , A 2 b 1 b_1, Ab_1, A^2b_1 b1,Ab1,A2b1线性无关,因此

T = [ b 1 A b 1 A 2 b 1 ] = [ 2 − 4 6 0 − 1 − 7 1 1 − 12 ] \begin{aligned} T &= [\begin{array}{ccc} b_1 & Ab_1 & A^2b_1 \end{array}] \\ &=\left [ \begin{array}{ccc} 2 & -4 & 6 \\ 0 & -1 & -7 \\ 1 & 1 & -12 \end{array}\right ] \end{aligned} T=[b1Ab1A2b1]=2014116712

步骤3:计算转换阵的逆

T − 1 = [ 19 / 72 − 7 / 12 17 / 36 − 7 / 22 − 5 / 12 7 / 36 1 / 72 − 1 / 12 − 1 / 36 ] = [ e 11 T e 12 T e 13 T ] \begin{aligned} T^{-1} &= \left [ \begin{array}{ccc} 19/72 & -7/12 & 17/36\\ -7/22& -5/12 & 7/36 \\ 1/72 & -1/12 & -1/36 \end{array}\right ] = \left[\begin{array}{ccc} e_{11}^T \\ e_{12}^T \\ e_{13}^T \end{array}\right] \end{aligned} T1=19/727/221/727/125/121/1217/367/361/36=e11Te12Te13T

步骤4:计算新的转换阵 S S S

S = [ e 13 T e 13 T A e 13 T A 2 ] = [ 1 / 72 − 1 / 12 − 1 / 36 − 1 / 24 − 3 / 4 1 / 12 1 / 8 − 15 / 4 3 / 4 ] \begin{aligned} S &= \left [\begin{array}{ccc} e_{13}^T \\ e_{13}^TA \\ e_{13}^TA^2 \end{array} \right] \\ &=\left [ \begin{array}{ccc} 1/72 & -1/12 & -1/36 \\ -1/24 & -3/4 & 1/12 \\ 1/8 & -15/4 & 3/4 \end{array}\right ] \end{aligned} S=e13Te13TAe13TA2=1/721/241/81/123/415/41/361/123/4

步骤5 计算

A c = S A S − 1 = [ 0 1 0 0 0 1 15 2 4 ] \begin{aligned} A_c &= SAS^{-1} \\ &= \left [ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 15 & 2 & 4 \end{array}\right ] \end{aligned} Ac=SAS1=0015102014

B c = S B = [ 0 − 1 / 36 0 1 / 12 1 3 / 4 ] \begin{aligned} B_c &= SB \\ &= \left [ \begin{array}{ccc} 0 & -1/36 \\ 0 & 1/12 \\ 1 & 3/4 \end{array}\right ] \end{aligned} Bc=SB=0011/361/123/4

因此

x ˉ ˙ = [ 0 1 0 0 0 1 15 2 4 ] x ˉ + [ 0 − 1 / 36 0 1 / 12 1 3 / 4 ] u \dot{\bar x} =\left [ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 15 & 2 & 4 \end{array}\right ] \bar x + \left [ \begin{array}{ccc} 0 & -1/36 \\ 0 & 1/12 \\ 1 & 3/4 \end{array}\right ] u xˉ˙=0015102014xˉ+0011/361/123/4u

matlab程序如下

%% 旺纳姆规范形II

format rat                     			% 分数显示
A=[-1 -4 -2; 0 6 -1; 1 7 -1];
B = [2 0; 0 0; 1 1];

% 步骤1,计算能控性
Qc = [B, A*B, A^2*B];
rank_Qc = rank(Qc)                    	% 结果为3

% 步骤2,计算转换阵
b1 = B(:,1);
b2 = B(:,2);
rank_b = rank([b1])                   	% 1
rank_b = rank([b1 A*b1])              	% 2
rank_b = rank([b1 A*b1 A^2*b1])       	% 3
T = [b1 A*b1 A^2*b1];

% 步骤3,计算转换阵的逆
inv_T = inv(T);
e13 = inv_T(3,:);

% 步骤4,计算新的转换阵
S = [e13; e13*A; e13*A^2];

% 步骤5,计算矩阵
Ac = S*A*inv(S); % 注意结果中可能有*,是因为非常接近0,取0即可
Bc = S*B;

3.2 龙伯格规范形II

直接给程序和结果

%% 龙伯格规范形II

format rat                     			% 分数显示
A=[-1 -4 -2; 0 6 -1; 1 7 -1];
B = [2 0; 0 0; 1 1];

% 步骤1,计算能控性
Qc = [B, A*B, A^2*B];
rank_Qc = rank(Qc)                    	% 结果为3

% 步骤2,计算转换阵
b1 = B(:,1);
b2 = B(:,2);
rank_b = rank([b1])                   	% 1
rank_b = rank([b1 b2])              	% 2
rank_b = rank([b1 b2 A*b1])       	% 3
T = [b1 A*b1 b2];

% 步骤3,计算转换阵的逆
inv_T = inv(T);
e13 = inv_T(3,:);

% 步骤4,计算新的转换阵
S = [e13; e13*A; e13*A^2];

% 步骤5,计算矩阵
Ac = S*A*inv(S); % 注意结果中可能有*,是因为非常接近0,取0即可
Bc = S*B;

x ˉ ˙ = [ 0 1 0 0 0 1 15 2 4 ] x ˉ + [ 0 1 0 − 3 − 36 − 27 ] u \dot{\bar x} =\left [ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 15 & 2 & 4 \end{array}\right ] \bar x + \left [ \begin{array}{ccc} 0 & 1 \\ 0 & -3 \\ -36 & -27 \end{array}\right ] u xˉ˙=0015102014xˉ+00361327u

《线性系统理论》2004 段广仁
链接:https://pan.baidu.com/s/1Oj96C1yGXrYnH2Ru4DAKYA
提取码:y3ne

– 完 –

  • 5
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大强强小强强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值