幂零变换的循环分解

幂零变换的循环分解

设σ是n维向量空间V上一个幂零变换,那么V可以分解为σ-循环子空间的直和:
V = W 1 ⊕ W 2 ⊕ . . . ⊕ W s V = W_1\oplus W_2\oplus ... \oplus W_s V=W1W2...Ws
r i = d i m ( W i ) r_i = dim(W_i) ri=dim(Wi), 我们有 r 1 ≥ r 2 ≥ . . . ≥ r s r_1\geq r_2\geq ...\geq r_s r1r2...rs.

证明

引理1

设σ是向量空间V上一个幂零变换,而定义一个多项式
h ( x ) = a 0 + a 1 x + . . . + a m x m h(x) = a_0 + a_1x +...+ a_mx^m h(x)=a0+a1x+...+amxm
那么当前仅当 a 0 ≠ 0 a_0\neq 0 a0=0,h(σ)可逆, 并且h(σ)的可逆变换也是一个σ的多项式。

引理1证明

先证必要性
如果 a 0 = 0 a_0 = 0 a0=0, 那么h(σ)也是个幂零变换,就不可逆,所以由h(σ)可逆即可推出, a 0 ≠ 0 a_0 \neq 0 a0=0
再证充分性
τ = a 1 σ + . . . + a m σ m τ = a_1σ +...+ a_mσ^m τ=a1σ+...+amσm, 则 h ( σ ) = a 0 + τ h(σ) =a_0 +τ h(σ)=a0+τ. 显然τ是个幂零变换, 设 τ r = θ τ^r = θ τr=θ, 那么
( a 0 + τ ) ( 1 a 0 − 1 a 0 2 τ + . . . + ( − 1 ) r − 1 1 a 0 r τ r − 1 ) = ι (a_0 +τ)(\frac1{a_0} - \frac1{a_0^2}τ+...+(-1)^{r-1}\frac1{a_0^r}τ^{r-1}) = ι (a0+τ)(a01a021τ+...+(1)r1a0r1τr1)=ι
显然h(σ)可逆, 并且h(σ)的可逆变换是一个σ的多项式。

引理2

设σ是向量空间V上一个幂零变换,W是r维的σ-循环子空间。如果存在一个整数k, 0 ≤ k ≤ r 0\leq k\leq r 0kr,使得 σ k ( ξ ) = 0 , ξ ∈ W σ^k(ξ) = 0, ξ\in W σk(ξ)=0,ξW,那么存在 η ∈ W η\in W ηW ξ = σ r − k ( η ) ξ = σ^{r-k}(η) ξ=σrk(η).

引理2证明

取σ对应W的一个循环基 ξ 0 ξ_0 ξ0, 那么 ξ = a 0 ξ 0 + a 1 σ ( ξ 0 ) + . . . + a r σ r ( ξ 0 ) ξ = a_0ξ_0 + a_1σ(ξ_0) + ... + a_rσ^r(ξ_0) ξ=a0ξ0+a1σ(ξ0)+...+arσr(ξ0),所以
0 = σ k ( ξ ) = a 0 σ k ( ξ 0 ) + a 1 σ k + 1 ( ξ 0 ) + . . . + a r σ k + r ( ξ 0 ) = a 0 σ k ( ξ 0 ) + a 1 σ k + 1 ( ξ 0 ) + . . . + a r − k − 1 σ r − 1 ( ξ 0 ) , 0 = σ^k(ξ) = a_0σ^k(ξ_0) + a_1σ^{k+1}(ξ_0) + ... + a_rσ^{k+r}(ξ_0) = a_0σ^k(ξ_0) + a_1σ^{k+1}(ξ_0) + ... + a_{r-k-1}σ^{r-1}(ξ_0), 0=σk(ξ)=a0σk(ξ0)+a1σk+1(ξ0)+...+arσk+r(ξ0)=a0σk(ξ0)+a1σk+1(ξ0)+...+ark1σr1(ξ0),
σ k ( ξ 0 ) , σ k + 1 ( ξ 0 ) , . . . , σ r − 1 ( ξ 0 ) σ^k(ξ_0),σ^{k+1}(ξ_0),...,σ^{r-1}(ξ_0) σk(ξ0),σk+1(ξ0),...,σr1(ξ0)线性无关,所以 a 0 = a 1 = . . . = a r − k − 1 = 0 a_0=a_1=...=a_{r-k-1}=0 a0=a1=...=ark1=0.所以
ξ = a r − k σ r − k ( ξ 0 ) + . . . + a r σ r ( ξ 0 ) = σ r − k ( a r − k ξ 0 + . . . + a r σ k ( ξ 0 ) ) ξ = a_{r-k}σ^{r-k}(ξ_0)+...+a_rσ^r(ξ_0) = σ^{r-k}(a_{r-k}ξ_0+...+a_rσ^k(ξ_0)) ξ=arkσrk(ξ0)+...+arσr(ξ0)=σrk(arkξ0+...+arσk(ξ0))
η = a r − k ξ 0 + . . . + a r σ k ( ξ 0 ) η = a_{r-k}ξ_0+...+a_rσ^k(ξ_0) η=arkξ0+...+arσk(ξ0), 显然 η ∈ W η\in W ηW, ξ = σ r − k ( η ) ξ =σ^{r-k}(η) ξ=σrk(η).

引理3

设σ是n维向量空间V上一个幂零变换, x r x^r xr是σ的最小多项式,令 W 1 W_1 W1是r维的σ-循环子空间.那么存在一个子空间 W 2 W_2 W2符合

(i) V = W 1 ⊕ W 2 V = W_1\oplus W_2 V=W1W2

(ii) σ在 W 2 W_2 W2上不变

引理3证明

利用构造加反证法来证明

定义一个集合A = {W|W是σ的不变子空间, W ∩ W 1 W\cap W_1 WW1 = {0}}, 显然{0} ∈ \in A,所以A非空,取W_2为A中维数最大的一个元素。 现在只需证 V = W 1 + W 2 V = W_1+W_2 V=W1+W2, 而显然 W 1 + W 2 ⊆ V W_1+W_2\subseteq V W1+W2V,那么只需证 V ⊆ W 1 + W 2 V \subseteq W_1+W_2 VW1+W2.

假设存在 ξ ∈ V ξ\in V ξV,并且 ξ ∉ W 1 + W 2 ξ\notin W_1+W_2 ξ/W1+W2

因为 σ r ( ξ ) = 0 ∈ W 1 + W 2 σ^r(ξ) = 0\in W_1+W_2 σr(ξ)=0W1+W2,所以存在最小的k,使得 σ k ( ξ ) ∈ W 1 + W 2 σ^k(ξ)\in W_1+W_2 σk(ξ)W1+W2,令
σ k ( ξ ) = ξ 1 + ξ 2 ξ 1 ∈ W 1 , ξ 2 ∈ W 2 σ^k(ξ) = ξ_1+ξ_2 ξ_1\in W_1, ξ_2\in W_2 σk(ξ)=ξ1+ξ2ξ1W1,ξ2W2
两边同时进行 σ r − k σ^{r-k} σrk变换, 0 = σ r − k ( ξ 1 ) + σ r − k ( ξ 2 ) 0 = σ^{r-k}(ξ_1)+σ^{r-k}(ξ_2) 0=σrk(ξ1)+σrk(ξ2)
σ r − k ( ξ 1 ) ∈ W 1 σ^{r-k}(ξ_1)\in W_1 σrk(ξ1)W1 ,又 σ r − k ( ξ 1 ) = − σ r − k ( ξ 2 ) ∈ W 1 σ^{r-k}(ξ_1) = -σ^{r-k}(ξ_2)\in W_1 σrk(ξ1)=σrk(ξ2)W1,所以 σ r − k ( ξ 1 ) ∈ W 1 ∩ W 2 σ^{r-k}(ξ_1)\in W_1\cap W_2 σrk(ξ1)W1W2, 所以 σ r − k ( ξ 1 ) = 0 σ^{r-k}(ξ_1) = 0 σrk(ξ1)=0

根据引理2存在 η ∈ W 1 η\in W_1 ηW1, ξ 1 = σ k ( η 1 ) ξ_1 = σ^k(η_1) ξ1=σk(η1),令 η = ξ − η 1 η = ξ - η_1 η=ξη1,因为 ξ ∉ W 1 + W 2 ξ\notin W_1+W_2 ξ/W1+W2,所以 η ∉ W 2 η\notin W_2 η/W2,那么
σ k ( η ) = σ k ( ξ − η 1 ) = σ k ( ξ ) − ξ 1 = ξ 2 ∈ W 2 σ^k(η) = σ^k(ξ - η_1)= σ^k(ξ) - ξ_1 = ξ_2 \in W_2 σk(η)=σk(ξη1)=σk(ξ)ξ1=ξ2W2
考察 W 2 + X ( η ) W_2+\mathscr X(η) W2+X(η) 显然不能在σ之下不变, 于是扩展, 令 W ′ = W 2 + X ( η , σ ( η ) , . . . , σ k − 1 ( η ) ) W' = W_2+\mathscr X(η,σ(η),...,σ^{k-1}(η)) W=W2+X(η,σ(η),...,σk1(η)),这时W’在σ之下不变。

因为 W 2 ⊆ W ′ W_2\subseteq W' W2W,并且 η ∈ W ′ , η ∉ W 2 η\in W', η\notin W_2 ηW,η/W2,所以 W 2 ⊂ W ′ W_2\subset W' W2W。所以 d i m W 2 < d i m W ′ dimW_2<dimW' dimW2<dimW.所以 W ′ ∉ A W'\notin A W/A. 所以 W ′ ∩ W 1 ≠ { 0 } W'\cap W_1 \neq \{0\} WW1={0},所以存在 ζ ≠ 0 , ζ ∈ W 1 , ζ ∈ W ′ ζ\neq0, ζ\in W_1, ζ\in W' ζ=0,ζW1,ζW.令
ζ = b 0 η + b 1 σ ( η ) + . . . + b k − 1 σ k − 1 ( η ) + ζ 2 , ζ 2 ∈ W 2 ζ = b_0η + b_1σ(η) + ... + b_{k-1}σ^{k-1}(η) + ζ_2, ζ_2\in W_2 ζ=b0η+b1σ(η)+...+bk1σk1(η)+ζ2,ζ2W2
并且 b 0 , b 1 , . . . , b k − 1 b_0,b_1,...,b_{k-1} b0,b1,...,bk1不全为0,令 s = m i n { i ∣ b i ≠ 0 } s = min\{i|b_i\neq0\} s=min{ibi=0},则
ζ = σ s ( b s + . . . + b k − 1 σ k − 1 − s ) ( η ) + ζ 2 , ζ 2 ∈ W 2 ζ = σ^s(b_s + ... + b_{k-1}σ^{k-1-s})(η) + ζ_2, ζ_2\in W_2 ζ=σs(bs+...+bk1σk1s)(η)+ζ2,ζ2W2
由引理1, σ s ( b s + . . . + b k − 1 σ k − 1 − s ) σ^s(b_s + ... + b_{k-1}σ^{k-1-s}) σs(bs+...+bk1σk1s)可逆, 并且其逆变换τ是σ的多项式。所以
τ ( ζ ) = σ s ( η ) + τ ( ζ 2 ) ∈ W 1 τ(ζ) = σ^s(η) + τ(ζ_2) \in W_1 τ(ζ)=σs(η)+τ(ζ2)W1
τ ( ζ 2 ) ∈ W 2 τ(ζ_2) \in W_2 τ(ζ2)W2,所以 σ s ( ξ ) − σ s ( η 1 ) = σ s ( η ) ∈ W 1 + W 2 σ^s(ξ) - σ^s(η_1) = σ^s(η) \in W_1+W_2 σs(ξ)σs(η1)=σs(η)W1+W2,而 σ s ( η 1 ) ∈ W 1 σ^s(η_1)\in W_1 σs(η1)W1 ,所以 σ s ( ξ ) ∈ W 1 + W 2 σ^s(ξ)\in W_1+W_2 σs(ξ)W1+W2, 而 s < k s<k s<k ,与k的取法矛盾.所以假设不成立。所以 V = W 1 + W 2 V = W_1+W_2 V=W1+W2
所以W_2符合要求。

原命题证明

证完引理3,其实已经很明显了,只需要在W_2上进行不断的分解就行。这里采用数学归纳法证明。

对V的维数n进行归纳
1° 当n=0时,结论显然成立。
2° 当 n ≤ k n\leq k nk时,结论成立。
当n=k+1时,令 p ( x ) = x r p(x) = x^r p(x)=xr, 利用引理3,可以将V分解为 V = W 1 ⊕ W ′ V=W_1\oplus W' V=W1W ,其中W_1是r维σ-循环子空间, 而 d i m W ′ = k + 1 − r ≤ k dimW' = k+1-r \leq k dimW=k+1rk, 令σ在W’上的限制 σ ′ = σ ∣ W ′ σ' = σ|_{W'} σ=σW,σ’也是幂零变换,并且σ’的最小多项式 p ′ ( x ) = x r ′ p'(x) = x^{r'} p(x)=xr, r ′ ≤ r r'\leq r rr, 所以W’可以分解为
W ′ = W 2 ⊕ W 3 ⊕ . . . ⊕ W s W' = W_2\oplus W_3\oplus ... \oplus W_s W=W2W3...Ws
r i = d i m ( W i ) r_i = dim(W_i) ri=dim(Wi), 我们有 r 2 ≥ . . . ≥ r s r_2\geq ...\geq r_s r2...rs, 而 r ′ ≤ r r'\leq r rr,所以
r 1 ≥ r 2 ≥ . . . ≥ r s r_1\geq r_2\geq ...\geq r_s r1r2...rs.
综合1° 2° 结论成立。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值