从MultiPath到WayFormer

本文讨论了Waymo的轨迹预测模型发展,从MultiPath到MultiPath++,再到WayFormer,重点介绍了模型结构的演变,包括训练前的轨迹近似、训练中的损失设计以及存在的问题,如信息丢失和算力浪费。文章还探讨了如何通过RNN、MCG和集成学习优化模型,以提升预测精度和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Waymo轨迹预测时间线

MutltiPath 2019
MultiPath++ 2021
WayFormer 2022

MultiPath

模型结构

在这里插入图片描述## Methods

Before training: trajectory approxiamtion

在训练之前,采用K-means聚类获得K条轨迹
因为:(1)该论文采用了anchor-based方案,在训练时需要有初始轨迹簇。(2)直接从大量的轨迹簇中获取,容易导致模态坍塌directly learning a mixture suffers from issues of mode collapse;(3)在其他领域(目标识别和人体位姿估计)中已有先验锚点的案列it’s common practice in other domains such as object detection [23] and human pose estimation。
在这里插入图片描述

During training

将场景信息光栅化得到rasterization image,然后进行卷积,得到一张feature map;
针对每一个障碍物进行crop,得到局部的feature map;
针对每一个障碍物,确定和真实轨迹最近的anchor,计算基于该anchor回归出的轨迹的loss。

loss是如何设计的

loss只监督和真值最近的那条anchor轨迹的参数,由两部分构成

  1. 和真值最近的那条轨迹的概率
  2. 那条轨迹在对应均值和方差下预测的轨迹点的概率密度
    以上加起来,取对数似然。

输出是什么

假设预测30步,一共有16条anchor轨迹,那么需要预测

  1. 16:16条轨迹的概率
  2. 16x30x2 = 960:16条轨迹,每条轨迹的轨迹点要预测其均值和方差

结果

在这里插入图片描述
在这里插入图片描述

MultiPath++

MultiPath有什么问题?

  1. 难以平衡光栅化图像的大小、精度和对应的算力需求,uneasy trade-off;
  2. 光栅化渲染的过程造成了信息丢失,如radial velocity;
  3. 固定anchor无法表征足够表征多元的场景 most modes are not a good fit
  4. 卷积适合于局部特征提取,难以提取长距离的信息,难以保证交互;
  5. 场景信息稀疏,造成算力浪费,information is spatially sparse。

如何优化

  1. 用RNN取代CNN,建模车道线、车辆历史轨迹等序列化信息
  2. 用MCG进行交互
  3. anchor隐式表征(latent representations of anchors)取代固定anchor
  4. 采用集成学习方法,对输出轨迹簇进行聚类

模型结构

在这里插入图片描述

Druing training: learned anchor embeddings

之前采用固定的显式的锚点轨迹簇,现在采用M个向量作为可训练的参数,和上游concat完的特征进行交互,从而后续解析得到轨迹簇。

WayFormer

模型结构

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值