文章目录
Waymo轨迹预测时间线
MutltiPath 2019
MultiPath++ 2021
WayFormer 2022
MultiPath
模型结构
## Methods
Before training: trajectory approxiamtion
在训练之前,采用K-means聚类获得K条轨迹
因为:(1)该论文采用了anchor-based方案,在训练时需要有初始轨迹簇。(2)直接从大量的轨迹簇中获取,容易导致模态坍塌directly learning a mixture suffers from issues of mode collapse;(3)在其他领域(目标识别和人体位姿估计)中已有先验锚点的案列it’s common practice in other domains such as object detection [23] and human pose estimation。
During training
将场景信息光栅化得到rasterization image,然后进行卷积,得到一张feature map;
针对每一个障碍物进行crop,得到局部的feature map;
针对每一个障碍物,确定和真实轨迹最近的anchor,计算基于该anchor回归出的轨迹的loss。
loss是如何设计的
loss只监督和真值最近的那条anchor轨迹的参数,由两部分构成
- 和真值最近的那条轨迹的概率
- 那条轨迹在对应均值和方差下预测的轨迹点的概率密度
以上加起来,取对数似然。
输出是什么
假设预测30步,一共有16条anchor轨迹,那么需要预测
- 16:16条轨迹的概率
- 16x30x2 = 960:16条轨迹,每条轨迹的轨迹点要预测其均值和方差
结果
MultiPath++
MultiPath有什么问题?
- 难以平衡光栅化图像的大小、精度和对应的算力需求,uneasy trade-off;
- 光栅化渲染的过程造成了信息丢失,如radial velocity;
- 固定anchor无法表征足够表征多元的场景 most modes are not a good fit
- 卷积适合于局部特征提取,难以提取长距离的信息,难以保证交互;
- 场景信息稀疏,造成算力浪费,information is spatially sparse。
如何优化
- 用RNN取代CNN,建模车道线、车辆历史轨迹等序列化信息
- 用MCG进行交互
- anchor隐式表征(latent representations of anchors)取代固定anchor
- 采用集成学习方法,对输出轨迹簇进行聚类
模型结构
Druing training: learned anchor embeddings
之前采用固定的显式的锚点轨迹簇,现在采用M个向量作为可训练的参数,和上游concat完的特征进行交互,从而后续解析得到轨迹簇。