关于对Kolmogorov-Arnold Networks (KANs)论文的一些理解

MIT全新神经网络结构KANs,200参数顶30万!3天1.4k star!轻松复现Nature封面AI数学研究!”。这个爆火的KANs是一种新型的神经网络,受到Kolmogorov-Arnold表示定理的启发,旨在替代传统的多层感知器(MLPs)。KANs的特点是其激活函数是可学习的,并且位于网络的边(权重)上,而不是节点(神经元)上。KANs没有线性权重矩阵,而是将每个权重参数替换为一个可学习的单变量函数,该函数以样条曲线的形式参数化。相信看完这段后绝大多数读者就晕了,那我试着做一些粗浅的解读。

一、什么是Kolmogorov-Arnold表示定理?

在1900年,数学家大卫·希尔伯特提出了23个数学问题,这些问题被认为是数学领域的重要挑战。第13问题是关于是否存在一个通用的方法,能够用有限次的算术运算和根号运算来表示任意一个七次方程的解。这个问题后来被推广为是否可以用有限个二元连续函数来表示任意多元连续函数。Kolmogorov-Arnold表示定理是对希尔伯特第13问题的一个回答。该定理指出,任意一个定义在有界域上的多变量连续函数都可以表示为有限数量的单变量连续函数的两层嵌套叠加的形式。换句话说,无论一个函数有多少个变量,它都可以通过一系列单变量函数的组合来表达。

简单一句话,Kolmogorov-Arnold表示定理告诉我们,复杂的任务可以通过简单的步骤组合来完

### Kan算法简介 Kolmogorov-Arnold Networks (KANs) 是一种基于 Kolmogorov-Arnold 表达定理的神经网络架构,旨在解决高维数据建模问题并提高模型的可解释性。该算法的核心在于利用特定的数学结构来逼近复杂的多变量函数[^3]。 #### 数学基础 KAN 的理论基础来源于 KolmogorovArnold 提出的一个重要结论:任何连续的多元函数都可以被分解为若干一元函数的组合形式。具体而言,对于任意 $ n $ 维连续函数 $ f(x_1, x_2, ..., x_n) $,可以将其表示为如下形式: $$ f(\mathbf{x}) = \sum_{i=1}^{N} g_i\left( h_i(x_1) + h_i(x_2) + ... + h_i(x_n) \right), $$ 其中 $ g_i $ 和 $ h_i $ 都是一元连续函数,$ N $ 是有限整数。这种表达方式使得 KAN 能够通过简单的运算(如加法、减法和平方)构建高度复杂的映射关系。 --- ### 工作原理 KAN 的工作流程主要分为以下几个部分: 1. **输入层重构** 输入向量 $\mathbf{x}$ 被转换成一组中间特征表示。这些特征由一系列简单的一元函数组成,通常采用正弦或线性变换的形式。这一过程简化了后续计算的复杂度。 2. **隐含层处理** 中间特征经过进一步加工后送入隐藏层。每一层都执行类似于上述公式的操作,即通过对多个子模块的结果求和完成最终输出预测。值得注意的是,在某些实现中,“减法”会被替换为“加法”的变体以优化性能[^2]。 3. **输出层生成** 输出节点负责汇总来自各路径的信息,并给出目标值估计。由于整个体系仅依赖基本算术运算符,因此具备较高的数值稳定性以及较低的时间开销特点。 以下是伪代码描述: ```python def kan_network(input_vector): # Step 1: Input transformation using unary functions transformed_inputs = [unary_function(xi) for xi in input_vector] # Step 2: Hidden layer processing with summation of components hidden_output = sum([g(h(transformed_input)) for h in inner_functions]) # Step 3: Output generation via final aggregation step output_value = aggregate(hidden_output) return output_value ``` --- ### 实现细节 尽管 KAN 的理念较为抽象,但在现代框架下其实现有多种方法可供选择。例如 TensorFlow 或 PyTorch 可用于搭建此类特殊拓扑结构。下面展示了一个简化的 Python 版本示例程序片段: ```python import numpy as np class SimpleKAN: def __init__(self, num_inner_funcs=5): self.num_inner_funcs = num_inner_funcs def unary_func(self, x): return np.sin(np.pi * x) def inner_func(self, x): return x ** 2 def predict(self, X): results = [] for sample in X: transformed = [self.unary_func(feature) for feature in sample] aggregated = sum([self.inner_func(t) for t in transformed]) results.append(aggregated) return np.array(results) # Example usage kan_model = SimpleKAN() X_test = [[0.1], [0.5], [-0.8]] print(kan_model.predict(X_test)) ``` 此脚本定义了一种非常基础版本的 KAN 架构,展示了如何逐级应用单元与内部功能来获得期望结果。 --- ### 应用场景与发展前景 目前来看,KAN 主要应用于那些需要兼顾精度同透明性的领域之中,比如金融风险评估或者医疗诊断辅助工具开发等方面。随着研究深入和技术进步,预计未来几年里会有更多改进型方案涌现出来,从而推动人工智能技术向着更加智能化方向迈进一大步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灿烂李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值