关于对Kolmogorov-Arnold Networks (KANs)论文的一些理解

MIT全新神经网络结构KANs,200参数顶30万!3天1.4k star!轻松复现Nature封面AI数学研究!”。这个爆火的KANs是一种新型的神经网络,受到Kolmogorov-Arnold表示定理的启发,旨在替代传统的多层感知器(MLPs)。KANs的特点是其激活函数是可学习的,并且位于网络的边(权重)上,而不是节点(神经元)上。KANs没有线性权重矩阵,而是将每个权重参数替换为一个可学习的单变量函数,该函数以样条曲线的形式参数化。相信看完这段后绝大多数读者就晕了,那我试着做一些粗浅的解读。

一、什么是Kolmogorov-Arnold表示定理?

在1900年,数学家大卫·希尔伯特提出了23个数学问题,这些问题被认为是数学领域的重要挑战。第13问题是关于是否存在一个通用的方法,能够用有限次的算术运算和根号运算来表示任意一个七次方程的解。这个问题后来被推广为是否可以用有限个二元连续函数来表示任意多元连续函数。Kolmogorov-Arnold表示定理是对希尔伯特第13问题的一个回答。该定理指出,任意一个定义在有界域上的多变量连续函数都可以表示为有限数量的单变量连续函数的两层嵌套叠加的形式。换句话说,无论一个函数有多少个变量,它都可以通过一系列单变量函数的组合来表达。

简单一句话,Kolmogorov-Arnold表示定理告诉我们,复杂的任务可以通过简单的步骤组合来完成。就像是一个工厂的生产线,每个工人只负责一个简单的步骤,但整个生产线能够生产出复杂的产品。

二、传统多层感知机(MLPs)又是什么?

多层感知机(Multi-layer perceptrons,MLPs)是受到人脑神经元网络连接方式的启发而设计的一种最基本的神经网络结构,它由多个层次组

<think>好的,用户现在问的是Kolmogorov-Arnold Networks(KAN)和SINDy的异同。我需要先回忆这两个方法的基本概念和应用领域。 首先,KAN是基于Kolmogorov-Arnold表示定理的神经网络模型,主要用于函数逼近,通过可学习的激活函数来提高准确性和可解释性。而SINDy(稀疏识别非线性动力学)则是用来从数据中发现动力学方程的系统识别方法,强调稀疏性以找到简洁的方程。 接下来要比较它们的异同。相同点可能包括数学基础、可解释性追求和数据驱动。不同点可能在模型结构、应用场景、实现方式和可扩展性等方面。 用户可能对这两个方法不太熟悉,需要解释清楚各自的原理,再对比。要注意用例子和结构图来辅助说明,但用户要求用中文,所以可能需要调整。同时要确保回答结构清晰,分点列出,帮助用户理解。 需要检查是否有遗漏的关键点,比如KAN的网络结构细节,SINDy的稀疏回归步骤。还要确认两者在可解释性上的不同,比如KAN通过结构可视化,SINDy通过方程形式。另外,应用场景的不同也很重要,KAN适用于更广泛的逼近问题,而SINDy专注于动力学系统识别。 最后,总结部分需要简明扼要,强调选择依据。可能用户在选择方法时需要根据问题类型和数据特点来决定,这部分要明确说明。</think>以下是Kolmogorov-Arnold Networks(KAN)与SINDy(Sparse Identification of Nonlinear Dynamics)的对比分析,通过数学原理、方法论和应用场景三个维度展开: --- ### 一、核心思想对比 #### 1. **Kolmogorov-Arnold Networks (KAN)** - **理论基础**:基于Kolmogorov-Arnold表示定理: $$ f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q\left( \sum_{p=1}^n \psi_{q,p}(x_p) \right) $$ 通过神经网络实现定理中内外层函数的参数化 - **核心创新**:用可学习的一维激活函数(如B样条基函数)替代传统MLP的固定激活函数 #### 2. **SINDy** - **理论基础**:稀疏回归(Sparse Regression): $$ \dot{\mathbf{x}} = \Theta(\mathbf{x})\Xi $$ 从候选函数库$\Theta(\mathbf{x})$中稀疏识别系数矩阵$\Xi$ - **核心创新**:通过Lasso回归发现动力学方程的最简形式 --- ### 二、方法论对比 | **维度** | KAN | SINDy | |-----------------|----------------------------------|---------------------------------| | **输入输出** | 通用函数逼近 $f: \mathbb{R}^n \to \mathbb{R}^m$ | 动态系统识别 $\dot{\mathbf{x}} = f(\mathbf{x})$ | | **参数化方式** | 可学习的基函数(B样条等) | 预设的候选基函数(多项式、三角函数等) | | **可解释性** | 网络结构可视化(函数成分分解) | 显式微分方程形式 | | **训练目标** | 最小化预测误差 | 最小化方程稀疏性+拟合误差 | | **数据需求** | 需要密集采样点 | 需要时间导数信息(或可数值差分) | --- ### 三、典型应用场景 #### 1. **KAN适用场景** - **高维函数逼近**:如材料特性预测 $E = f(\text{成分}, \text{温度}, \text{应力})$ - **科学规律发现**:通过可视化网络结构解析物理规律 - **示例**:拟合量子化学势能面 $V(r_1,...,r_n)$ #### 2. **SINDy适用场景** - **动力学系统建模**:如流体力学方程发现 $\frac{du}{dt} = \mu \nabla^2 u - u\cdot\nabla u$ - **控制方程重构**:从振动数据识别弹簧-阻尼系统方程 $m\ddot{x} + c\dot{x} + kx = 0$ - **示例**:从心电图数据重建心脏电活动模型 --- ### 四、数学实现对比 #### 1. **KAN网络结构** ```python # 简化的KAN层实现(基于B样条激活) class KANLayer(nn.Module): def __init__(self, in_dim, out_dim, grid_size=5): super().__init__() self.basis = nn.Parameter(torch.randn(out_dim, in_dim, grid_size)) # B样条系数 self.scale = nn.Parameter(torch.ones(out_dim, in_dim)) def forward(self, x): # x: (B, in_dim) x = x.unsqueeze(-1) # (B, in_dim, 1) activations = torch.einsum('bik,oik->bio', x, self.basis) # B样条计算 return torch.sum(activations * self.scale, dim=1) # (B, out_dim) ``` #### 2. **SINDy算法步骤** ```python def sindy(X, dX, library_functions, lambda_=0.1): # X: 状态矩阵 (m samples × n variables) # dX: 导数矩阵 Theta = library_functions(X) # 构建候选库 Xi = np.linalg.lstsq(Theta, dX, rcond=None)[0] # 最小二乘 Xi = lasso_regression(Theta, dX, lambda_) # 稀疏回归 return Xi # 识别出的系数矩阵 ``` --- ### 五、优势与局限对比 | **方法** | 优势 | 局限 | |---------|------------------------------|------------------------------| | **KAN** | 1. 理论保证的通用逼近能力<br>2. 结构可解释性强<br>3. 无需预设基函数 | 1. 训练计算成本高<br>2. 需要精细调参<br>3. 动态系统建模效率较低 | | **SINDy**| 1. 方程形式明确<br>2. 计算效率高<br>3. 适合低维系统 | 1. 依赖导数估计精度<br>2. 基函数需要人工设计<br>3. 高维系统扩展困难 | --- ### 六、选择建议 - **选KAN**:当需要建模复杂非线性关系,且希望解析函数组成结构时 - **选SINDy**:当目标是发现物理系统微分方程,且维度较低(<10维)时 - **混合使用**:可用KAN生成高精度数据,再用SINDy提取简化方程 两者共同推动了可解释机器学习的发展,但分别聚焦于"黑箱模型透明化"(KAN)和"白箱模型自动化"(SINDy)两个不同方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灿烂李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值