detr(detection transformer)模型训练自己的数据集

该文详细介绍了DETR对象检测模型的源码下载、编译配置步骤,包括数据集格式要求。在编译过程中遇到的torchvision.ops导入错误可通过修改pytorch版本解决。此外,文章还解析了训练过程中的评价指标,如不同IoU阈值和物体大小类别的AveragePrecision及AverageRecall。
摘要由CSDN通过智能技术生成

目录

1.detr源码下载

 2. 编译配置

3. 编译报错问题 

4. 训练过程打印参数解读 


1.detr源码下载

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

 2. 编译配置

 编译参数只需要传递数据集路径即可,数据集格式是coco数据集类型

 

 数据集文件夹名字和文件名字在coco.py的build函数中写死了。

 可以在build函数中自己修改数据集的文件名字,配置完成后可以成功编译了。

 

 

3. 编译报错问题 

ImportError: cannot import name '_new_empty_tensor' from 'torchvision.ops

是pytorch版本问题,点击进去,把下面3行代码注释掉即可

4. 训练过程打印参数解读 
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.129
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.420
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.029
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.322
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.141
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.064
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.246
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.249
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.375
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.268
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
terminate called without an active exception

在COCO数据集评价指标中,所有的AP 默认为mAP,

area:表示目标检测的物体是大物体还是小物体,大小物体的划分依据,all表示所有物体

APsmall                       % AP for small objects: area < 32^2

APmedium                   % AP for medium objects: 32^2 < area < 96^2

APlarge                        % AP for large objects: area > 96^2

masDets=100:表示一张图中能检测到的最多的物体数量是100

上图中mAP50=42.0%,mAP50:0.95 = 12.9% 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值