CenterMask: single shot instance segmentation with point representation

anchor free新思想

在这里插入图片描述
文章提供新思路把实例分割分解为两个分支:local shape和global Saliency。含义很简单一个局部一个全局。local shape可以用来进行分类也可以区分开不同的实例。global saliency类似于全卷积网络,生成语义分割图像。二者结合就可以完成实力分割任务。

pipeline

在这里插入图片描述
提取到featuremap后分为5路。heatmap用来定位中心点和分类。offset用来中心点预测偏移量。size用跟据heatmap和offset得到的中心点对每一个点预测BB的长和宽。saliency就是全局的语义分割。
shape分支理解了很久看了https://www.cnblogs.com/importGPX/p/13466259.html#2local-shape-prediction
在这里插入图片描述

终于明白一点。在我们等到featuremap WxH一点后,其大小为1x1xS^2,把他reshape成SxS,在进行resize成hxw,这是SxS就代表了一个实例中各个像素块的信息了,对于局部的mask在这时已经建立完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值