Q_01_03 高级矩阵概念

高级矩阵概念

我们现在将我们对矩阵的操纵扩展到特征值,特征向量和指数,它们构成了我们需要描述和实现量子算法的基本工具。

特征值和特征向量

M 是一个方形矩阵,v 是一个不是全零向量的向量(即所有入口等于0 的向量)。 我们说v M 的一个特征向量 ,如果Mv=cv 对于某些数字c  。 我们说c 是对应于特征向量v 的特征值。 一般来说,一个矩阵M 可能将一个向量转换为任何其他向量,但是一个特征向量是特殊的,因为除了乘以一个数字之外,它保持不变。 请注意,如果v 是特征值c 的特征向量,则av 也是具有相同特征值的特征向量(对于任何非零a)。

例如,对于单位矩阵,每个矢量v是特征值1的特征向量。

作为另一个例子,考虑一个对角线矩阵D,它在对角线上只有非零的条目:


矢量


是这个矩阵的特征向量,分别具有特征值d1d2d3 如果d1d2d3是不同的数字,那么这些向量(及其倍数)是矩阵D的唯一特征向量。 一般来说,对于对角矩阵,很容易读出特征值和特征向量。 特征值是出现在对角线上的所有数字,它们各自的特征向量是具有一个入口等于1且其余入口等于0的单位向量。

注意在上面的例子中,D的特征向量构成了3 - 维向量的基础。 基础是一组向量,这样任何向量都可以写成它们的线性组合。 更明确地说,v1v2v3构成一个基础,如果任何向量v可以写成v=a1v1+a2v2+a3v3的某些数字a1a2 ,和a3

回想一下,Hermitian矩阵(也称为自伴随矩阵)是一个等于它自己的复共轭的复方阵,而酉矩阵是一个复矩阵矩阵,其逆矩阵等于它的复共轭。 对于本质上是量子计算中遇到的唯一矩阵的厄密矩阵和酉矩阵,存在一个被称为谱定理的一般结果,其定义如下:对于任何Hermitian矩阵或酉矩阵M,存在单位U使得对于一些对角矩阵DM= 此外,D的对角线条目将是M的特征值。

我们已经知道如何计算对角矩阵D的特征值和特征向量。 使用这个定理,我们知道如果v是特征值c的特征向量,即Dv=cv,那么v将是M的特征向量,特征值为C 这是因为


矩阵指数

矩阵指数也可以精确地类似于指数函数来定义。 矩阵A的矩阵指数可以表示为


这是很重要的,因为量子力学时间演化是由Hermitian矩阵BeiB形式的酉矩阵描述的。 出于这个原因,执行矩阵指数是量子计算的一个基本部分,因此Q#提供了描述这些操作的内在例程。 在实践中有许多方法可以计算经典计算机上的矩阵指数,并且通常在数值上逼近这样的指数充满了危险。 Cleve Moler和Charles Van Loan。 “十九种计算矩阵指数的可疑方法。” SIAM审核20.4(1978):801-836了解更多有关所涉及挑战的信息。

理解如何计算矩阵的指数的最简单方法是通过矩阵的特征值和特征向量。 具体而言,上面讨论的频谱定理说,对于每个Hermitian或酉矩阵A

,存在酉矩阵U和对角矩阵D,使得A=DU 由于单位性的特性,我们有A2=D2U,并且类似地对于任何功率p Ap=DpU 如果我们用运算符定义的运算符指数代替它,我们可以得到:


换句话说,如果转化为矩阵A的特征基,那么计算矩阵指数就相当于计算矩阵特征值的普通指数。 由于量子计算中的许多操作涉及执行矩阵指数,所以这种转换成矩阵的特征基以简化执行算子指数的技巧频繁出现,并且是许多量子算法的基础,例如稍后讨论的Trotter-Suzuki式量子模拟方法。本指南。

另一个有用的性质是,如果B既是单一的又是厄密特的,即B=B1=然后B2= 1 通过将这个规则应用于矩阵指数的上述扩展,并将 1B组合在一起,可以看出,对于任何实数值x而言,身份

成立。 这个技巧特别有用,因为它允许推理矩阵指数具有的行为,即使B

的维数是指数级大的,对于特殊情况下B 既是单一的又是Hermitian。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值