Xcode真机调试报错:“Could not locate device support files.”(升级Xcode调试支持包)

Xcode真机调试报错:“Could not locate device support files.”(升级Xcode调试支持包)

报错

在使用Xcode进行IOS的真机调试时,爆出错误。如图:
错误

Could not locate device support files.
This iPad Pro (12.9-inch,2nd generation) (Model A1821,A1671) is running iOS 13.5.1 (17F80), which may not be supported by this version of Xcode.

原因

移动设备上的IOS系统升级之后,而Mac的上的Xcode没有升级,便不能进行真机测试,原因是老的Xcode中没有新的系统配置文件。我用的iPad就是系统升级到iOS 13.5.1之后,而Xcode版本并没有升级,这时候就报了上面的错误。

解决方案

  1. 更新Xcode,但是更新的很慢,并且更新期间不能打开Xcode,如果急着解决bug或开发的话就耽搁时间。
  2. 更新Xcode的真机支持包,真机运行的支持包的位置,在:/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport,将最新的包拖进去或导入即可:
    文件路径

如何导入调试包

打开文件夹。

方式一
  • 打开 Finder(访达);
    Finder
  • 按下: Command⌘+Shift⇧+G;
  • 输入:/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport
方式二
  • 打开Finder(访达);
  • 应用程序---------->找到Xcode;
  • 右键显示包内容;
  • Contents---------->Developer---------->Platforms---------->iPhoneOS.platform---------->DeviceSupport;
方式三
  • 点击桌面左上角一排中选择“前往”---------->选择前往文件夹
  • 输入以下路径:/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport

把文件放到这个文件夹下,重新启动Xcode,连上真机运行,Xcode会开始下载调试组件(2-3G),下载完成之后就能在真机上运行了~

调试支持包资源链接

参考链接

  1. https://www.jianshu.com/p/031c3958a370
  2. https://www.jianshu.com/p/38931f09ca0f
### 使用 Stable Diffusion 模型生成视频的方法 为了利用 Stable Diffusion 模型创建视频内容,通常会采用一系列特定的技术流程来实现这一目标。以下是具体方法: #### 准备工作环境 确保安装并配置好必要的软件和工具链。这括但不限于 PyTorch 和 Hugging Face 的 Diffusers 库[^2]。 ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors ``` #### 加载预训练模型 通过调用 `diffusers` 中提供的 API 来加载预先训练好的 Stable Diffusion 模型实例。这些模型能够执行基于文本到图像或多帧序列的任务转换。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` #### 定义动画参数 设置用于控制视频合成的关键变量,比如帧率、持续时间以及每秒产生的图片数量等属性。此外还需要定义场景之间的过渡效果和平滑度选项。 ```python num_inference_steps = 50 # 推理步数 guidance_scale = 7.5 # 创意指导强度 video_length_seconds = 8 # 输出视频长度(秒) frames_per_second = 24 # 帧速率 (FPS) total_frames = int(video_length_seconds * frames_per_second) ``` #### 创建连续帧序列 对于每一帧都应用相同的 prompt 或者动态调整 prompts 来构建连贯的故事线。可以引入一些变化因素使相邻两帧之间存在差异从而形成流畅的动作感。 ```python prompts = ["A beautiful landscape at sunrise"] * total_frames for i in range(total_frames): if i % 10 == 0 and i != 0: new_prompt = f"A beautiful landscape with {i//10} birds flying over it." prompts[i:] = [new_prompt]*(total_frames-i) images = [] for frame_idx in range(total_frames): image = pipeline(prompts[frame_idx], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] images.append(image) ``` #### 合成最终视频文件 最后一步就是把所有的静态图象拼接起来成为一个完整的 MP4 文件或者其他格式的多媒体资源。可借助第三方库如 moviepy 实现此操作。 ```python from moviepy.editor import ImageSequenceClip clip = ImageSequenceClip(images, fps=frames_per_second) output_video_path = "./generated_video.mp4" clip.write_videofile(output_video_path, codec="libx264", audio=False) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天富儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值