【机器学习系列】变分推断第一讲:Variational Inference背景和用途


作者:CHEONG

公众号:AI机器学习与知识图谱

研究方向:自然语言处理与知识图谱

阅读本文之前,首先注意以下两点:

1、机器学习系列文章常含有大量公式推导证明,为了更好理解,文章在最开始会给出本文的重要结论,方便最快速度理解本文核心。需要进一步了解推导细节可继续往后看。

2、文中含有大量公式,若读者需要获取含公式原稿Word文档,可关注公众号【AI机器学习与知识图谱】后回复:变分推断第一讲,可添加微信号【17865190919】进学习交流群,加好友时备注来自CSDN。原创不易,转载请告知并注明出处!

本文将从机器学习中的频率角度和贝叶斯角度阐述各自解决问题的途径,然后引出变分推断的用途和用法。


一、本文结论

结论1: 从频率角度出发,通常把问题当成优化问题进行求解;从贝叶斯角度出发,通常把问题看成积分问题进行求解;

结论2: 变分推断是一种求解后验概率分布 p ( z ∣ x ) p(z|x) p(zx)的近似推断方法,变分推断将Inference问题转化为优化问题进行求解;

结论3: 变分推断的主要思想:在给定数据集 X X X下,问题是求后验概率 p p p,简单情况下后验概率 p p p可直接通过贝叶斯公式推导求出,但有些情况无法直接求解。因此变分推断想法是先假设另一个简单的概率分布 q q q,如高斯分布,通过优化 p p p q q q之间距离最小化,让概率分布 q q q逼近p,这样就可以用概率分布 q q q近似表示后验概率 p p p


二、频率角度

从频率的角度出发,通常把问题当成优化问题来看待,下面通过三个简单例子认识一下。


例子1:回归问题。

回归问题在机器学习中很简单,首先回归模型为:

在这里插入图片描述

回归问题的Loss Function使用的是最小二乘法:

在这里插入图片描述

从上面公式可以看出,回归问题是一个无约束的最小优化问题。如果存在问题存在解析解则通过求导可以直接求出,如果问题不存在解析解,可通过梯度下降GD和随机梯度下降法SGD进行求解。


例子2:SVM分类问题。

机器学习经典的SVM分类算法模型为:

在这里插入图片描述

SVM算法的Loss Function定义为:

在这里插入图片描述

可以看出SVM是一个带有约束条件的优化问题,我们通常使用拉格朗日乘子法和对偶法进行求解,寻找分类的最有超平面。


例子3:EM算法。

EM算法常用于求解含有隐变量的概率模型的学习问题,比如高斯混合模型的Learning问题,EM算法将其转化为一个最优化问题。EM算法通过E-Step求期望,再通过M-Step最大化期望来对参数进行求解,参数求解公式为:

在这里插入图片描述


三、贝叶斯角度

从贝叶斯角度出发可以把问题看成是积分问题。贝叶斯公式为:

在这里插入图片描述

贝叶斯中常常需要求解后验概率分布 p ( z ∣ x ) p(z|x) p(zx),被称为贝叶斯推断,如下公式通过积分求概率分布:

在这里插入图片描述

那么推断的方法有哪些呢?首先如上公式所示,可以直接通过公式就能求出来的,称为精确推断。还有一类无法通过公式精确推断出来,称为近似推断。如下图所示,近似推断又分为两类:确定性近似推断和随机近似推断。而变分推断Variational Inference就是确定性近似推断的一种常用方法。在接下来文章中将讲解变分推断对Inference问题的详细解法。

在这里插入图片描述

### 回答1: 变分推断variational inference)是一种用于在概率模型中近似推断潜在变量的方法。在概率模型中,我们通常有观测数据潜在变量两个部分。我们希望通过观测数据集来估计潜在变量的后验分布。然而,由于计算复杂度的限制,我们无法直接计算后验分布。 变分推断通过近似后验分布为一个简化的分布来解决这个问题。它会选择一个与真实后验分布相似的分布族,然后通过最小化这个分布与真实后验分布之间的差异来得到一个最佳的近似分布。这个问题可以转化为一个最优化问题,通常使用变分推断的一个常用方法是最大化证据下界(evidence lower bound,ELBO)来近似后验分布。 变分推断的一个重要特点是可以处理大规模复杂的概率模型。由于近似分布是通过简化的分布族来表示的,而不是直接计算后验分布,所以它可以减少计算复杂度。此外,变分推断还可以通过引入额外的约束或假设来进一步简化近似分布,提高计算效率。 然而,变分推断也有一些缺点。因为近似分布是通过简化的分布族来表示的,所以它会引入一定的偏差。此外,变分推断的结果依赖于所选择的分布族,如果分布族选择不合适,可能会导致较差的近似结果。 总之,变分推断是一种用于近似计算概率模型中后验分布的方法,通过选择一个与真实后验分布相似的分布族,并最小化与真实后验分布之间的差异来得到一个最佳的近似分布。它具有处理大规模复杂模型的能力,但也有一些局限性。 ### 回答2: 转变分推断variational inference)是一种用于近似求解复杂概率模型的方法。它的核心思想是将复杂的后验分布近似为一个简单的分布,通过最小化这两个分布之间的差异来求解模型的参数。 变分推断通过引入一个简单分布(称为变分分布)来近似复杂的后验分布。这个简单分布通常属于某个已知分布族,例如高斯分布或指数分布。变分推断通过最小化变分分布真实后验分布之间的差异,来找到最优的参数。 为了实现这一点,变分推断使用了KL散度(Kullback-Leibler divergence)这一概念。KL散度是用来衡量两个概率分布之间的差异的指标。通过最小化变分分布与真实后验分布之间的KL散度,我们可以找到一个最优的变分分布来近似真实后验分布。 变分推断的步骤通常包括以下几个步骤: 1. 定义变分分布:选择一个简单的分布族作为变分分布,例如高斯分布。 2. 定义目标函数:根据KL散度的定义,定义一个目标函数,通常包括模型的似然函数变分分布的熵。 3. 最优化:使用数值方法(例如梯度下降法)最小化目标函数,找到最优的变分参数。 4. 近似求解:通过最优的变分参数,得到近似的后验分布,并用于模型的推断或预测。 变分推断的优点是可以通过选择合适的变分分布,来控制近似精度计算复杂度之间的平衡。它可以应用于各种概率模型机器学习任务,例如潜在变量模型、深度学习无监督学习等。 总而言之,转变分推断是一种用于近似求解复杂概率模型的方法,通过近似后验分布来求解模型的参数。它通过最小化变分分布与真实后验分布之间的差异来实现近似求解。这个方法可以应用于各种概率模型机器学习任务,具有广泛的应用价值。 ### 回答3: 变分推断Variational Inference)是一种用于概率模型中的近似推断方法。它的目标是通过近似的方式来近似估计概率分布中的某些未知参数或隐变量。 在概率模型中,我们通常希望得到后验概率分布,即给定观测数据的情况下,未知参数或隐变量的概率分布。然而,由于计算复杂性的原因,我们往往无法直接计算后验分布。 变分推断通过引入一个称为变分分布的简化分布,将原问题转化为一个优化问题。具体来说,我们假设变分分布属于某个分布族,并通过优化一个目标函数,使得变分分布尽可能接近真实的后验分布。 目标函数通常使用卡尔贝克-勒勒散度(Kullback-Leibler divergence)来度量变分分布与真实后验分布之间的差异。通过最小化这个目标函数,我们可以找到最优的近似分布。在这个优化问题中,我们通常将问题转化为一个变分推断问题,其中我们需要优化关于变分分布的参数。 变分推断的一个优点是可以应用于各种类型的概率模型,无论是具有连续随机变量还是离散变量。此外,变分推断还可以解决复杂的后验推断问题,如变分贝叶斯方法逐步变分推断等。 然而,变分推断也存在一些限制。例如,它通常要求选择一个合适的变分分布族,并且该族必须在计算上可以处理。此外,变分推断还可能导致近似误差,因为我们将问题简化为一个优化问题,可能会导致对真实后验分布的一些信息丢失。 总而言之,变分推断是一种强大的近似推断方法,可以用于概率模型中的参数隐变量的估计。它通过引入变分分布来近似计算复杂的后验概率分布,从而转化为一个优化问题。然而,需要注意选择合适的变分分布族可能的近似误差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值