系列文章目录
[2025-2-19]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-21]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-22/23周末]光刻机、芯片、人工智能、机器人领域国内外学界进展
[2025-2-24]光刻机、芯片、人工智能、机器人领域国内外学界进展
一、光刻机/半导体领域
-
英特尔表示,新的 ASML 机器已投入生产
英特尔(INTC.O)周一表示,来自 ASML Holding(ASML.AS)的前两款尖端光刻机已在工厂“投产”,初步数据显示它们比早期型号更可靠。在加利福尼亚州圣何塞的一次会议上,英特尔高级首席工程师史蒂夫·卡森表示,英特尔在单个季度内使用 ASML 的高数值孔径(NA)光刻机生产了 3 万个晶圆,这些大型的硅片可以制造出数千个计算芯片。据分析,良率在20%~30% -
来源:[Intel says new ASML machines are in production, with positive results]
-
重新思考 2nm 节点多图案化
- 2nm 节点光刻技术现状:根据《2022 版国际器件与系统路线图》,2025 年的 “2nm” 节点金属最小半间距为 10nm,小于当前 EUV 系统分辨率。即便下一代高数值孔径(NA)的 EUV 系统,在成像 20nm 线间距时,随机行为也难以控制。因此,2nm 节点即便采用 EUV 光刻,双图案化也不可避免,且双图案化中的线宽难以通过直接曝光确定,需借助自对准双图案化(SADP)技术。
- SADP 技术及应用:SADP 通过在芯轴上沉积间隔层、回蚀保留侧壁、去除芯轴来加倍特征密度。台积电在 2021 年美国专利申请中暗示了 LELE - SADP 方法,LELE(光刻 - 蚀刻 - 光刻 - 蚀刻)用于形成两个单独的芯轴图案,作为 SADP 的基础图案。不过,部分核心图案线宽过小无法直接印刷,需要从较大曝光线宽进行修整,但并非所有情况都适用修整方法。
- EUV 与 DUV 光刻技术对比:在 20nm 间距下,EUV 和 DUV 光刻都是可行选择,二者在实现特征尺寸和分辨率上效果相近,且对光刻性能和效率影响无显著差异。DUV 光刻以 480nm 起始曝光间距,也能达到 10nm 最小半间距尺寸,相比 EUV 可大幅降低成本。
- 2nm 及更先进节点光刻技术展望:2nm 及更先进节点采用背面供电技术,将宽轨和窄轨分别置于晶体管上下不同层,有助于简化多重图案化流程。在 16 - 18nm 间距时,EUV 将采用自对准四重图案化(SAQP),DUV 将采用自对准六重图案化(SASP),二者都只需一次掩模曝光,相比 LELE - SADP 的两次掩模曝光有所改进 ,SASP 能将 ArF 浸没式光刻分辨率从 38nm 半间距提升至 6.3nm 半间距。
二、芯片领域
-
美光宣布 1γ(1-伽马)DRAM 发货:为未来计算需求开创内存技术进步
美光科技公司(纳斯达克:MU)今日宣布,它是行业内首家向生态系统合作伙伴和精选客户出货其 1γ(1-伽马)、第六代(10nm 级)基于 DRAM 节点的 DDR5 内存样品,该内存专为下一代 CPU 设计。这一 1γDRAM 里程碑建立在美光之前 1α(1-阿尔法)和 1β(1-贝塔)DRAM 节点领导地位的基础上,将带来推动从云端到工业和消费应用,再到边缘 AI 设备如 AI 电脑、智能手机和汽车等未来计算平台的创新。美光 1γDRAM 节点将首先应用于其 16Gb DDR5 DRAM,随着时间的推移,将整合到美光内存产品组合中,以满足行业对高性能、节能内存解决方案的需求。该 16Gb DDR5 产品旨在提供高达 9200MT/s 的速度能力,与前辈相比,速度提升高达 15%,功率降低超过 20%。
-
意大利寻求因业绩不佳解雇意法半导体 CEO
罗马认为,鉴于行业面临日益加剧的逆风,首席执行官的表现不足,熟悉此事的人士告诉彭博社,他们拒绝透露姓名,因为他们未经授权公开讲话。在巴黎时间下午 1:55,意法半导体(STMicro)的股价下跌了 3%。意法半导体,其芯片应用于汽车和其他产品,一直在努力应对汽车和工业半导体需求的下滑。该公司在一月份表示,2024 年是几十年来行业最糟糕的年份之一,并给出了低于分析师预期的预测。彭博社报道,该公司正在寻求在需求持续低迷的情况下裁减多达 3000 个工作岗位。
-
苹果将在美国建设 AI 数据中心
苹果将在未来四年内投入超过 5000 亿美元,在美国使用美国制造的 NVIDIA 芯片,由 TSM 在美国工厂生产的芯片,建设大型 AI 数据中心。计划包括在德克萨斯州建设一座新工厂、将美国先进制造基金翻倍、建立一个制造学院,以及加速对人工智能和硅工程的投资。
-
来源: Apple will spend more than $500 billion in the U.S. over the next four years
-
Synopsys 扩展硬件辅助验证组合以应对不断增长的芯片复杂性
Synopsys 宣布扩大其硬件辅助验证(HAV)产品组合,以加速半导体设计创新。这些进步旨在满足半导体复杂性的日益增长需求,使软件和硬件领域实现更快、更高效的验证。HAV 解决方案解决软件、硬件、接口和架构中的复合复杂性,在制造前后实现稳健的验证。新产品包括下一代硬件引擎(ZeBu-200 和 HAPS-200),这些引擎为验证速度和效率提供了显著的性能提升。
三、人工智能领域
-
Anthropic 推出先进的 AI 混合推理模型
华盛顿,2025 年 2 月 25 日(WAM)–Anthropic 于周一推出了一种先进的 AI 模型,该模型可以产生更快的响应或展示其逐步推理过程,旨在在生成式人工智能行业中获得竞争优势。在扩展思考模式下,该模型“在回答前进行自我反思”,从而提高了其在数学、物理、指令遵循、编码和其他许多任务中的性能,Anthropic 表示。
-
微软Magma:多模态人工智能代理的基础模型
Magma,一个服务于数字和物理世界多模态 AI 代理任务的基座模型。Magma 是视觉-语言(VL)模型的重要扩展,前者不仅保留了后者的 VL 理解能力(语言智能),还配备了在视觉空间世界中进行规划和行动的能力(空间智能),以及完成从 UI 导航到机器人操作等代理任务。Magma 在大量的异构 VL 数据集上进行预训练,包括图像、视频和机器人数据,其中图像中的可操作视觉对象(例如 GUI 中的可点击按钮)由标记集合(SoM)进行标记,而视频中的对象运动(例如机器人臂的轨迹)由标记轨迹(ToM)进行标记。大量实验表明,SoM 和 ToM 有助于从大规模训练数据中获取空间智能。Magma 在 UI 导航和机器人操作任务上创造了新的最先进成果,优于专门针对这些任务的先前模型。在 VL 任务上,Magma 也与在更大数据集上训练的流行 VL 模型进行了有利的比较。
-
Deepseek DeepEP开源:针对混合专家(MoE)和专家并行(EP)的通信库
DeepEP 解决了在 GPU 之间分发和聚合标记时的固有低效问题。该库提供了高吞吐量、低延迟的全对全 GPU 内核——通常被称为 MoE 分发和组合内核,这些内核简化了训练和推理过程中的数据交换。值得注意的是,DeepEP 支持低精度操作(包括 FP8),与 DeepSeek-V3 论文中详细描述的技术相一致。这次发布直接回应了在节点内和节点间环境中扩展 MoE 架构的挑战。DeepEP 提供两种主要类型的内核,旨在满足不同的操作需求:
- 普通内核:这些内核针对需要高吞吐量的场景进行了优化,例如在推理或训练的预填充阶段。它们通过利用 NVLink 和 RDMA 网络技术,有效地在 GPU 之间传输数据。例如,在配备 NVLink 的 Hopper GPU 上的测试显示,节点间通信的吞吐量约为 153 GB/s,而使用 CX7 InfiniBand(约 50 GB/s 带宽)的节点间测试实现了接近 43-47 GB/s 的稳定性能。通过最大化可用带宽,这些内核在令牌分发和结果合并期间的通信开销降低。
- 低延迟内核:对于响应性至关重要的推理任务,DeepEP 提供仅依赖 RDMA 的低延迟内核。这些内核针对处理小批量(常见于实时应用)进行了优化,据报道,涉及八个专家的调度操作的延迟低至 163 微秒。设计还集成了基于钩子的通信-计算重叠技术,允许数据传输与计算同时进行,而不会消耗 GPU 流式多处理器(SM)
-
来源: DeepEP: an efficient expert-parallel communication library
四、机器人领域
-
智元开源大型仿真框架AgiBot Digital World
自研的大型仿真框架AgiBot Digital World正式发布!这是一个专门为机器人操作技能研究与应用设计的仿真平台,不仅提供了灵活的仿真数据生成方案,还开源了预训练的大规模仿真数据。这个数据集涵盖了5大类场景:从温馨的家居环境,到繁忙的商超,再到井井有条的办公空间,甚至包括了餐饮和工业场景。其中家居场景占据了36%的比重,商超场景紧随其后占21%,其他场景各占14.3%。
-
强化学习三重奏提升 Spot 的奔跑速度
波士顿动力发布的 Spot 四足机器人研究版本带有低层级 API,RAI 研究所借此运用强化学习技术,将 Spot 的运行速度提升至 5.2 米 / 秒,是其出厂最高速度 1.6 米 / 秒的三倍多。Spot 的运动方式类似小跑但有飞行阶段,这是其为保持速度而自主探索出的行为。Spot 原有的模型预测控制(MPC)基于软件模型,虽可靠但有局限性,难以突破机器人性能极限。而强化学习离线学习,可使用复杂模型,在模拟环境中训练控制策略后应用于机器人。通过强化学习,研究人员发现限制 Spot 速度的因素是电池供电不足,而非执行器或运动学问题。