【matlab】基于GNN图神经网络模型的最小连通支配集(MCDS)构造算法

基于GNN图神经网络模型的最小连通支配集(MCDS)构造算法介绍

最小连通支配集(Minimum Connected Dominating Set, MCDS)是图论中的一个经典问题,目标是找到一个最小的节点子集,使得这些节点能够覆盖图中的所有其他节点,并且这些节点之间是连通的。MCDS在无线传感器网络、社交网络分析、通信网络优化等领域有广泛应用。

图神经网络(Graph Neural Network, GNN)是一种专门用于处理图结构数据的深度学习模型。通过结合GNN和MCDS问题,可以利用GNN的图表示学习能力,自动学习图中的节点特征和结构信息,从而高效地构造MCDS。


应用场景

  1. 无线传感器网络:用于选择最小的传感器节点集,覆盖整个网络并保持连通性。
  2. 社交网络分析:用于识别关键用户节点,以最小成本传播信息。
  3. 通信网络优化:用于优化网络拓扑结构,减少通信开销。
  4. 物联网:用于设备网络的能量优化和路由选择。

原理解释

最小连
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值