【全网独家】DeepSeek 模型架构(Transformer架构详解+DeepSeek编码器-解码器结构+动态稀疏注意力机制)

DeepSeek 模型架构

DeepSeek 是一种基于 Transformer 架构的深度学习模型,广泛应用于自然语言处理(NLP)任务。其核心架构包括编码器-解码器结构,并引入了动态稀疏注意力机制以提高模型的效率和性能。

1. Transformer 架构详解

Transformer 是一种基于自注意力机制的神经网络架构,由 Vaswani 等人在 2017 年提出。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖注意力机制来处理序列数据。

主要组件:

  • 自注意力机制(Self-Attention): 允许模型在处理每个词时考虑输入序列中的所有词,从而捕捉全局依赖关系。
  • 多头注意力机制(Multi-Head Attention): 通过多个注意力头并行处理输入序列,捕捉不同的子空间信息。
  • 前馈神经网络(Feed-Forward Network): 对每个位置的表示进行非线性变换。
  • 位置编码(Positional Encoding&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值