DeepSeek 模型架构
DeepSeek 是一种基于 Transformer 架构的深度学习模型,广泛应用于自然语言处理(NLP)任务。其核心架构包括编码器-解码器结构,并引入了动态稀疏注意力机制以提高模型的效率和性能。
1. Transformer 架构详解
Transformer 是一种基于自注意力机制的神经网络架构,由 Vaswani 等人在 2017 年提出。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖注意力机制来处理序列数据。
主要组件:
- 自注意力机制(Self-Attention): 允许模型在处理每个词时考虑输入序列中的所有词,从而捕捉全局依赖关系。
- 多头注意力机制(Multi-Head Attention): 通过多个注意力头并行处理输入序列,捕捉不同的子空间信息。
- 前馈神经网络(Feed-Forward Network): 对每个位置的表示进行非线性变换。
- 位置编码(Positional Encoding&#