MODERN ROBOTICS MECHANICS 第三章 Rigid-Body Motions(刚体运动)

本文详细介绍了刚体在空间中的运动,包括旋转矩阵的性质和使用、角速度、旋转的指数坐标表示以及刚体运动与扭转。重点讨论了旋转矩阵的群概念、齐次变换矩阵及其在机器人运动学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这一章非常重要,内容有些多,是后续章节的基础

  • 刚体的速度由表示(twist):3个角速度,3个角速度
  • 刚体的受力由表示(wrench):3个力矩,3个力
  • free vector: 只有长度和方向的向量,例如线速度向量就是自由向量
  • space frame{s}: 可以理解为基座上的坐标系,定系,也叫fixed frame
  • boby frame{b}: 可以理解为末端执行器上的坐标系,动系
  • 笛卡尔坐标系约定: 

1 刚体的在空间中的运动

  • 在{s}坐标系下表示{b} ,注意带有\hat{}^符号的向量是单位向量
    • 位置 
    • 角度

  • 刚体在运动过程中无非就是平移+旋转,这个特别像螺旋运动(旋转+平移)
    • 旋转轴:
    • 旋转+平移表示为:绕旋转轴旋转
    • 角速度+线速度表示为 (可以理解为旋转+平移的微分)

2 旋转和角速度

2.1 旋转矩阵

2.1.1 旋转矩阵的性质

  • 旋转矩阵R的性质:
    • 由3列组成,每列3个元素
    • 每列都是单位向量
    • 任意两列之间互相垂直
    • 通过线性代数的知识就可以知道,满足上面这三点的矩阵是3维的标准正交阵
  • 群的概念
    • 不要感觉它很高大上
    • 只要满足以下四个性质,都可以称之为群,对于A,B属于一个集合(如:A,B属于标准正交阵的集合)
      • 封闭性:AB还在这个集合中,(两个标准正交阵的乘积还是标准正交阵)
      • 结合律:(矩阵乘法满足这个规律)
      • 存在单位元:(对于标准正交阵集合,单位矩阵就是单位元)
      • 存在逆元:(对于标准正交阵集合,矩阵的转置就是矩阵的逆)
  • 有了旋转矩阵的性质和群的概念,可以很清楚的知道,旋转矩阵的集合就是一个群,我们称之为特殊正交群,缩写SO(3)

2.1.2 旋转矩阵的使用

  • 表示方向
    • :坐标系{b}在坐标系{s}中的表示
  • 改变参考坐标系
    • 在下一章求正运动学中会用到
  • 旋转矢量或坐标系
    • 将坐标系{s}绕转轴旋转得到{s'}
  • 绕坐标轴的旋转公式: 

  • 更一般的旋转公式

2.2 角速度

  • 斜对称矩阵:斜对称矩阵被称为so(3)(李代数),给定向量,则斜对称矩阵定义为:

  • 斜对称矩阵的应用

    • 对于任意,R∈SO(3),总有成立
    • 将叉乘转化为点乘:

  • 对于定坐标系{s}: 
  • 对于动坐标系{b}: 

2.3 旋转的指数坐标表示

2.3.1 线性微分方程的求解

  • 微分方程 

  • 将上式微分方程中的a转换为矩阵A时

  • 矩阵的指数方程满足下面性质:
    • 如果矩阵A可以表示为(证明过程看书)
    • 如果 ,则 

2.3.2 旋转的指数坐标表示

  • 已知时,位置在,绕着轴旋转,当时,位置在,任意时刻线速度为:

  • 旋转矩阵的指数表示如何计算:

  • 旋转矩阵的指数表示为:

2.3.3 旋转的对数矩阵

  • 旋转矩阵的指数表示为,它的逆运算被称为对数矩阵
  • 已知R,求的计算过程:(推导过程见教材)
    • 如果,则不能决定
    • 如果,则为下面3个中有意义的一个:

  • 其他情况为:

3 刚体的运动与扭转

3.1 齐次变换矩阵

  • 齐次变换矩阵:这个名词不要把它看得特别奇特,就是我们常说的T,由旋转矩阵和位置向量组成
  • 特殊欧拉群(Special Euclidean Group):前面说过,只要满足封闭性、结合律、存在单位元、存在零元都可以成为群,这里将具有齐次变换矩阵形式的矩阵集合称为特殊欧拉群 

3.1.1 齐次变换矩阵的性质

  • 齐次变换矩阵的逆还是齐次变换矩阵,而且求逆有简单方法

  • 齐次变换矩阵的乘积还是齐次变换矩阵
  • 满足结合律:
  • 齐次坐标:已知坐标,齐次坐标为
  • 标准欧几里得范数:

  • 标准欧几里得內积

3.1.2 齐次变换矩阵的使用

  • 主要用途:
    • 刚体的位置和方向表示: 
    • 改变参考坐标系: 
    • 置换(旋转和平移)一个向量或坐标系:

  • 坐标变换(相对于固定坐标系{s}): 
  • 坐标变换(相对于动坐标系{b}):

3.2 Twists

3.2.1 Twists的理解

  • 定义:,b:代表{b}(body); s:代表{s}(space)
  • 斜对称矩阵:(推导过程看书)
    • :在{b}坐标系下的角速度
    • :在{s}坐标系下的角速度
    • :在{b}坐标系下的线速度
    • :在{s}坐标系下的线速度

  • 伴随矩阵:,求T的伴随矩阵

  • T的伴随映射(T用于位置的变换,T的伴随用于速度的变换):

  • 伴随矩阵的性质:

3.2.2 Twists的旋量解释

  • 角速度可以表示为,为单位向量,只表示方向
  • twists也可以有类似的表示:
  • 螺旋轴在这里也称为旋量,可以由三个参数表示
    • : 螺旋轴上的任意一点
    • : 螺旋轴方向上的单位向量
    • : 螺距,绕轴线转动一圈而沿轴线移动的距离(线速度/角速度
      • :纯选择
      • :纯移动

3.3 刚体运动的指数坐标表示

3.3.1 刚体运行的指数表示

3.3.2 刚体运行的对数表示

4 Wrenches

  • 上一节主要讲的是运动学有关的物理量在指数空间上的表示,这一节讲解动力学有关的物理量在指数空间上的表示
  • 定义一个6维空间力在坐标系{a}中的表示,也叫wrench,符号为(实际上就是力矩和力的结合)

  • 功率与坐标系的选择无关: 
  • 固定坐标系{s}与末端执行器动坐标系{b}之间的转换

5 总结

  • 最后给出总结:(摘自 (美)John J. Craig写的《Introduction to Robotics Mechanics and Control》)

### 回答1: 现代机器人学涉及到机器人的构造、运动、控制和计划等一系列问题。机器人的研发和应用需要掌握机器人运动的相关机理和规律,以便对机器人进行有效的规划和控制。 机器人的动力学和静力学是机器人学中的重要分支。动力学主要研究机器人的加速度、速度和位移等动力学之间的关系,而静力学则研究机器人的力学平衡问题。这些知识是实现机器人精确控制和规划机器人运动的重要基础。 机器人的运动规划是机器人控制中的核心问题。它需要根据机器人的构造和任务需求确定机器人的运动轨迹和动作序列,以便实现机器人的自主运动和控制。机器人的运动规划可以基于运动学和动力学分析,也可以采用启发式或优化算法进行。 机器人控制包括开环和闭环控制。开环控制是指机器人按照预先设定的动作序列进行运动,而闭环控制是指机器人根据传感器反馈信息进行动态调整和修正。现代机器人学研究的重点是闭环控制,因为这样可以实现机器人的自主控制和响应环境变化。 总之,现代机器人学涉及到机器人的力学、运动规划和控制等方面,需要掌握相关的原理和技术,以便实现机器人精确控制和自主运动。 ### 回答2: 现代机器人力学规划与控制是机器人技术的重要研究领域。它主要研究如何使机器人能够完成所需任务以及如何控制机器人的运动和动作。在机器人技术的发展过程中,机器人力学规划与控制是至关重要的一环。 机器人力学规划与控制需要掌握多种技能,涉及到机械学、控制理论、计算机科学、数学和物理学等学科的知识。机器人力学规划与控制通过确定机器人的位置、速度和方向来指导机器人的行动。它还涉及到如何使机器人避免撞击、如何识别并处理环境中的障碍物等问题。在机器人力学规划与控制的研究中,肯定会用到很多复杂的模型和算法,比如基于随机采样的路径规划方法、采用强化学习的机器人动作控制等。 随着机器人技术的不断发展,机器人力学规划与控制的意义也越来越重要。它不仅是机器人研发的重要环节,还可以应用于自动化生产线、智能家居等领域,为人们的生活带来更多便利和效率。 ### 回答3: 近年来,现代机器人力学规划与控制技术已经发展成为机器人领域的一个关键问题。随着工业自动化的不断发展,许多传统的制造行业已经开始采用机器人进行生产,这也促使机器人技术的不断升级和进步,以满足不同应用领域的需求。 现代机器人力学规划与控制技术是机器人技术中的一个重要分支,它主要研究机器人的运动学、动力学、轨迹规划以及控制等方面。随着机器人应用的不断扩大,机器人对运动规划和控制的要求越来越高,因此对现代机器人力学规划与控制技术的研究也日益重要。 机器人的伺服控制是机器人运动控制的核心问题之一,现代机器人力学规划与控制技术可以实现对机器人的伺服控制,保证机器人的定位精度和运动平稳性。此外,它还可以实现机器人轨迹规划和仿真分析,使机器人具有更加高效、灵活的运动能力。 总之,现代机器人力学规划与控制技术在机器人技术领域的应用越来越广泛,它对机器人的运动规划和控制提出了更高的要求,也为机器人的应用领域提供了更多的可能性和空间。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值