1 概率机器人 Probabilistic Robotics 概率基本概念

11 篇文章 9 订阅
11 篇文章 0 订阅

基本概念

本片博文为后续博文做基础铺垫,给出符号和基本公式的定义:

  • 随机变量 X X X的值为 x x x: p ( X = x ) p(X=x) p(X=x) 简写为 p ( x ) p(x) p(x)
    ∑ x p ( x ) = 1          离散 ∫ p ( x ) d x = 1        连续 (1.1) \sum_xp(x) = 1 ~~~~~~~~~\text{离散}\\ \int p(x)dx=1 ~~~~~~~\text{连续}\tag{1.1} xp(x)=1         离散p(x)dx=1       连续(1.1)
  • 正态分布 N ( x ; u , σ 2 ) N(x;u,\sigma^2) N(x;u,σ2)
    p ( x ) = ( 2 π σ 2 ) − 1 2 exp ⁡ { − 1 2 ( x − μ ) 2 σ 2 } ↓ 多维 p ( x ) = d e t ( 2 π Σ 2 ) − 1 2 exp ⁡ { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } (1.2) p(x) = (2\pi\sigma^2)^{-\frac{1}{2}}\exp\left \{ -\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right \}\\ \downarrow \text{多维}\\ p(x) = det(2\pi\Sigma^2)^{-\frac{1}{2}}\exp\left \{ -\frac{1}{2} (x-\mu)^T\Sigma^{-1}(x-\mu)\right \}\tag{1.2} p(x)=(2πσ2)21exp{21σ2(xμ)2}多维p(x)=det(2πΣ2)21exp{21(xμ)TΣ1(xμ)}(1.2)
  • 联合分布:
    p ( x , y ) = p ( X = x ∪ Y = y ) ↓ X , Y 独立 p ( x , y ) = p ( x ) p ( y ) (1.3) p(x,y) = p(X=x \cup Y=y)\\ \downarrow X,Y\text{独立}\\ p(x,y) = p(x)p(y)\tag{1.3} p(x,y)=p(X=xY=y)X,Y独立p(x,y)=p(x)p(y)(1.3)
  • 条件分布:
    p ( x ∣ y ) = p ( X = x ∣ Y = y ) ↓ p ( x ∣ y ) = p ( x , y ) p ( y ) ↓ X , Y 独立 p ( x ∣ y ) = p ( x ) p ( y ) p ( y ) = p ( x ) (1.4) p(x|y) = p(X=x|Y=y)\\ \downarrow\\ p(x|y) =\frac{p(x,y)}{p(y)}\\ \downarrow X,Y\text{独立}\\ p(x|y) =\frac{p(x)p(y)}{p(y)} = p(x)\tag{1.4} p(xy)=p(X=xY=y)p(xy)=p(y)p(x,y)X,Y独立p(xy)=p(y)p(x)p(y)=p(x)(1.4)
  • 全概率公式:
    p ( x ) = ∑ y p ( x ∣ y ) p ( y )       离散 p ( x ) = ∫ p ( x ∣ y ) p ( y ) d y       连续 (1.5) p(x) = \sum_y p(x|y)p(y) ~~~~~~ \text{离散}\\ p(x) = \int p(x|y)p(y)dy ~~~~~~ \text{连续}\tag{1.5} p(x)=yp(xy)p(y)      离散p(x)=p(xy)p(y)dy      连续(1.5)
  • 贝叶斯准则:(很重要)
    p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) = p ( y ∣ x ) p ( x ) ∑ x ′ p ( y ∣ x ′ ) p ( x ′ )       离散 p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) = p ( y ∣ x ) p ( x ) ∫ p ( y ∣ x ′ ) p ( x ′ ) d x ′       连续 ↓ p ( y ) − 1 被写为 η p ( x ∣ y ) = η p ( y ∣ x ) p ( x ) (1.6) p(x|y) =\frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x'}p(y|x')p(x')} ~~~~~~ \text{离散}\\ p(x|y) =\frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\int p(y|x')p(x')dx'} ~~~~~~ \text{连续}\\ \downarrow p(y)^{-1}\text{被写为}\eta\\ p(x|y) = \eta p(y|x)p(x)\tag{1.6} p(xy)=p(y)p(yx)p(x)=xp(yx)p(x)p(yx)p(x)      离散p(xy)=p(y)p(yx)p(x)=p(yx)p(x)dxp(yx)p(x)      连续p(y)1被写为ηp(xy)=ηp(yx)p(x)(1.6)
  • 多变量条件概率:
    p ( x ∣ y , z ) = p ( y ∣ x , z ) p ( x ∣ z ) p ( y ∣ z ) (1.7) p(x|y,z) =\frac{p(y|x,z)p(x|z)}{p(y|z)}\tag{1.7} p(xy,z)=p(yz)p(yx,z)p(xz)(1.7)
  • 条件概率的独立性(X,Y独立):
    p ( x , y ∣ z ) = p ( x ∣ z ) p ( y ∣ z ) p ( x ∣ z ) = p ( x ∣ z , y ) p ( y ∣ z ) = p ( y ∣ z , x ) (1.8) p(x,y|z) = p(x|z)p(y|z)\\ p(x|z) = p(x|z,y)\\ p(y|z) = p(y|z,x)\tag{1.8} p(x,yz)=p(xz)p(yz)p(xz)=p(xz,y)p(yz)=p(yz,x)(1.8)
  • 条件独立不一定绝对独立,绝对独立不一定条件独立:
    p ( x , y ∣ z ) = p ( x ∣ z ) p ( y ∣ z ) ⇏ p ( x , y ) = p ( x ) p ( y ) p ( x , y ) = p ( x ) p ( y ) ⇏ p ( x , y ∣ z ) = p ( x ∣ z ) p ( y ∣ z ) (1.9) \begin{aligned} p(x,y|z) = p(x|z)p(y|z) &\nRightarrow p(x,y) = p(x)p(y)\\ p(x,y) = p(x)p(y) &\nRightarrow p(x,y|z) = p(x|z)p(y|z)\tag{1.9} \end{aligned} p(x,yz)=p(xz)p(yz)p(x,y)=p(x)p(y)p(x,y)=p(x)p(y)p(x,yz)=p(xz)p(yz)(1.9)
  • 期望:
    E [ X ] = ∑ x x p ( x )       离散 E [ X ] = ∫ x p ( x ) d x       连续 ↓ E [ a X + b ] = a E [ X ] + b (1.10) E[X] = \sum_x xp(x) ~~~~~~ \text{离散}\\ E[X] = \int xp(x)dx ~~~~~~ \text{连续}\\\tag{1.10} \downarrow\\ E[aX + b] = aE[X] +b E[X]=xxp(x)      离散E[X]=xp(x)dx      连续E[aX+b]=aE[X]+b(1.10)
  • 协方差:
    C o v [ X ] = E [ X − E [ X ] ] 2 = E [ X 2 ] − E [ X ] 2 (1.11) Cov[X] = E[X-E[X]]^2 = E[X^2] - E[X]^2\tag{1.11} Cov[X]=E[XE[X]]2=E[X2]E[X]2(1.11)
  • 熵:
    H p ( x ) = E [ − log ⁡ 2 p ( x ) ] ↓ H p ( x ) = − ∑ x p ( x ) log ⁡ 2 p ( x )       离散 H p ( x ) = ∫ p ( x ) log ⁡ 2 p ( x ) d x       连续 (1.12) H_p(x) = E[-\log_2p(x)]\\ \downarrow\\ H_p(x) = -\sum_x p(x)\log_2p(x) ~~~~~~ \text{离散}\\ H_p(x) = \int p(x)\log_2p(x)dx ~~~~~~ \text{连续}\\\tag{1.12} Hp(x)=E[log2p(x)]Hp(x)=xp(x)log2p(x)      离散Hp(x)=p(x)log2p(x)dx      连续(1.12)
  • 测量值 z z z
    z t 1 : t 2 = z t 1 , z t 1 + 1 , z t 1 + 2 , ⋯   , z t 2 (1.13) z_{t_1:t_2} = z_{t_1}, z_{t_1+1}, z_{t_1+2}, \cdots, z_{t_2}\tag{1.13} zt1:t2=zt1,zt1+1,zt1+2,,zt2(1.13)
  • 控制值 u u u
    u t 1 : t 2 = u t 1 , u t 1 + 1 , u t 1 + 2 , ⋯   , u t 2 (1.14) u_{t_1:t_2} = u_{t_1}, u_{t_1+1}, u_{t_1+2}, \cdots, u_{t_2}\tag{1.14} ut1:t2=ut1,ut1+1,ut1+2,,ut2(1.14)
  • 条件独立性的例子:
    • 状态变量 x t x_t xt仅与状态 x t − 1 x_{t-1} xt1和控制量 u t u_t ut有关
    • 观测值 z t z_t zt仅与状态 x t x_{t} xt有关
      在这里插入图片描述

p ( x t ∣ x 0 : t − 1 , z 1 : t − 1 , u 1 : t ) = p ( x t ∣ x t − 1 , u t ) p ( z t ∣ x 0 : t , z 1 : t − 1 , u 1 : t ) = p ( z t ∣ x t ) (1.15) p(x_t|x_{0:t-1},z_{1:t-1},u_{1:t}) = p(x_t|x_{t-1},u_t) p(z_t|x_{0:t},z_{1:t-1},u_{1:t}) = p(z_t|x_{t})\tag{1.15} p(xtx0:t1,z1:t1,u1:t)=p(xtxt1,ut)p(ztx0:t,z1:t1,u1:t)=p(ztxt)(1.15)

  • 置信度:
    b e l ( x t ) = p ( x t ∣ z 1 : t , u 1 : t ) b e l ˉ ( x t ) = p ( x t ∣ z 1 : t − 1 , u 1 : t ) (1.16) bel(x_t) = p(x_t|z_{1:t},u_{1:t})\\ \bar{bel}(x_t) = p(x_t|z_{1:t-1},u_{1:t})\tag{1.16} bel(xt)=p(xtz1:t,u1:t)belˉ(xt)=p(xtz1:t1,u1:t)(1.16)
    b e l ˉ ( x t ) \bar{bel}(x_t) belˉ(xt)中计算 b e l ( x t ) bel(x_t) bel(xt)称为修正测量更新

下一章

参考文章

  • Thrun, & Sebastian. (2005). Probabilistic robotics.
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值