【Unity】万人同屏, 从入门到放弃之——多线程RVO避障

本文探讨了在Unity中如何实现大规模游戏场景中的动态避障,特别是在处理万人同屏时遇到的性能挑战。作者介绍了使用LOD技术、GPU动画优化、非Dots多线程RVO2插件的解决方案,以及传统方法的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Unity万人同屏动态避障 GPU动画 Entities Graphics高性能合批渲染插件的使用_哔哩哔哩_bilibili

 万人同屏方案(gpu动画、渲染、索敌、避障等功能),可某宝搜【店铺】:【游戏开发资源商店】获取整套方案源码。

划重点!!此方案是绕开Entities(ECS),不用写一行ECS代码,现有MonoBehavior开发工作流享受Entities渲染的性能。已有项目也能使用此方案开挂,无需代码重构!

万人同屏对抗demo测试包下载,以及万人同屏方案性能测试,有需要的老板可以某宝【搜店铺】:【游戏开发资源商店】:https://pan.baidu.com/s/1ML0DC8s0RkkTAraN9maltw?pwd=blueicon-default.png?t=N7T8https://pan.baidu.com/s/1ML0DC8s0RkkTAraN9maltw?pwd=blue

不使用Dots能否实现海量物体同屏?很多场面宏大的游戏,尤其是Rougelike游戏,动辄成千上万满屏怪,割草清屏的快感酣畅淋漓,所以这类游戏非常火爆,然鹅是怎么做到的呢?

首先,海量移动物体用寻路是行不通的,即使是支持多线程的A * Pathfinding Pro区区三五百个就开始严重掉帧。

测试环境:

Unity 2022.3.9f1, URP 14.0.8

模型顶点数1195, LOD1顶点数858,LOD2定点数530

PC:i7-13700KF + 3070 8G;

手机端Android:骁龙8 gen2;

PC端RVO避障测试:

 PC端Unity Editor下压测,区区5000人就快掉到50帧, 先帝创业未半而中道崩殂。CPU端性能消耗主要再RVO避障每帧构建KDTree计算和上传数据到GPU,GPU这边则是在一边凉快,坐等CPU准备和上传渲染数据到GPU;

PC, 5000人:

 手机端骁龙8 gen2真机,3千人就已经扛不住了,掉到24帧。用的HybridCLR热更解释执行,不过即使是AOT也只能再高出5 - 10帧左右。

手机, 3000人:

动画部分毫无疑问,不能用Animator。是通过把骨骼动画每帧的顶点信息写到Texture,运行时使用Mesh Render + Shader从中从顶点Texture中把位置读出来用,SRP会自动合批:

使用LOD:

Okay, 那就降低模型面数,使用LOD功能,  LOD1 顶点降低30%, LOD2 降低60%的情况下,果然效果显著:

PC端5000人, 帧数几乎翻倍,100帧左右:

 手机端3000人, 也几乎翻倍, 帧数来到了44:

 就这? ??而且这是在没有复杂游戏逻辑的情况下的表现,实际项目中还会大打折扣。看来,使用传统方式不要说万人同屏,千人都费劲。

结论: 传统方式极限发挥也就是千人同屏的水平,放弃!

不过RVO避障还是需要的。测试项目基于开源RVO2 C#版修改:GitHub - snape/RVO2-CS: Optimal Reciprocal Collision Avoidance (C#)

 主要对原版RVO做了以下修改:

1. 使用Easy Threading并行刷新RVO Agent;

2. 增加删除Agent的功能;

3. 增加Agent避障权重设置,如,把到达目标位置的Agent权重设置为0后, 它就不会被其它Agent挤走;

4. 增加形状障碍物,BoxObstacle、 CircleObstacle、EdgeObstacle;

5. 性能优化,使用ArrayPool取代每帧创建数组;

6. RVO.Vector2改为Unity Vector2,以及RVO.Math优化,避免原版分母为0导致的异常。

RVO2 Unity修改版:GitHub - sunsvip/UnityRVO2: RVO for unity

注意:

如上使用的多线程并非Dots中的JobSystem,因此线程间数据传递会导致大量gc。

强烈推荐Job System版RVO:【Unity】十万人同屏寻路? 基于Dots技术的多线程RVO2避障_TopGames的博客-CSDN博客

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值