
协同过滤基于分析和收集用户的历史行为数据,包括历史交互(例如,点击、浏览、购买)和用户偏好(例如,评级)。
基于内容的过滤基于用户的用户简介和项目简介来建议产品。项目是用关键词描述的,用户的个人资料将表达用户喜欢的项目类型。这种方法的主要思想是用户可能会选择他们以前喜欢的类似项目。
混合方法结合了协作过滤和基于内容的过滤的不同技术,以获得更好的结果。
•简介
传统推荐方法的缺点——为了达到更高的推荐准确率,需要大量用户与项目之间的交互。为了解决数据稀疏和冷启动问题,多模态信息被引入推荐系统。
多模态模型能够表示和发现不同模态之间隐藏的关系,并可能恢复单模态方法和隐含交互无法捕获的互补信息。为了将多模态信息合并到推荐系统中,当前的方法是从不同模态中提取特征,然后使用模态融合结果作为辅助信息或项目表示。
•多模态推荐的管道
多模态推荐系统旨在通过多模态特征来学习用户和项目的信息表示。
第一步是从原始数据中提取模态特征。
提取后的特征可以选择在输入层、模型中间层、输出层进行融合。
•特征提取
特征提取的目的是用嵌入以低维和可解释的方式描述模态特征。
模态数据可以通过两种方式使用。
第一种是将预先提取的模态数据传递到模型中,第二种是通过应用端到端学习将原始数据传递到该模型中。
大多数MMRec模型设置遵循第一种方法来使用预提取的特征。不同的模态数据具有模态特定的提取方法。
常用的多模态数据集与使用这些数据集的论文如下:
•模型分类
早期:
矩阵分解与多层感知机(MLP)
目前:
1)引入深度学习,自动编码器、可变式自动编码器;
2)开始使用图卷积网络(GCN)学习每个模态的表示,然后将模态表示和id嵌入融合在一起,作为最终的项目表示。基于GCN结构,研究人员引入了知识图、注意力机制、边提炼等融合方式。
3)预训练和微调
基于矩阵分解的模型
矩阵分解是一种协同过滤方法。利用矩阵分解法将用户-项目交互矩阵分解为两个低维矩形矩阵的乘积。
基于深度学习的模型
1.多层感知机
多模式特征的丰富来源可以代表用户偏好的不同方面。在JRL[69]框架中,使用MLP将不同的信息源投影到统一空间中。学习将多模态特征转为用户和项目嵌入中的权重。
同时,已经使用特征重建损失来学习相关联的用户和项目表示。
[69]Yongfeng Zhang, Qingyao Ai, Xu Chen, and W Bruce Croft. 2017. Joint representation learning for top-n recommendation with heterogeneous information sources. In Proceedings of the 2017 ACM on Conference on Information andKnowledge Management . 1449–1458.
2.卷积神经网络(CNN)
CNN是一种具有卷积层和池化操作的前馈神经网络,用于处理多模态特征。大多数基于CNN的推荐系统利用CNN来提取特征或通过捕捉全局和局部特征来学习表示。
3.注意力网络
注意力机制是由人类的注意力驱动的。注意力机制模拟