TOC
写在前面,最近要做一个多路输出的辅助电源,就想着直接从市电整流取电来设计反激电源
反激变压器设计
\qquad 反激变压器开关模态和理想波形图很简单,这里不做分析
\qquad 设计目标:1.输入电压范围(窄范围输入176VAC~275VAC)、2.工频50Hz、3.输出电压Vo1 = 15V(0.1A),Vo2 = 15V(0.9A),Vo3 = 5V(3A),Vo4 = 12V(1A),Vo5 = -12V(1A)、4.效率 η > 80 % \eta>80\% η>80%。需要确定的量有,变压器匝比、原边电感量、匝数、线径、磁芯、气隙等参数。
设计流程如图
\qquad
利用磁通守恒或伏秒定理容易推得输入输出关系式
V
o
=
N
s
N
p
D
1
−
D
电压增益M
=
N
s
N
p
D
1
−
D
V_o =\cfrac{N_s}{Np}\cfrac{D}{1-D}\qquad\text{电压增益M}=\cfrac{N_s}{N_p}\cfrac{D}{1-D}
Vo=NpNs1−DD电压增益M=NpNs1−DD
\qquad
确定匝比,匝比是由副边二极管,原边mos应力决定,假设工作时最大占空比Dmax = 0.45
{
V
i
=
n
⋅
V
o
1
−
D
m
a
x
D
m
a
x
<
V
i
_
m
i
n
V
d
s
=
n
V
o
+
V
i
_
m
a
x
<
α
1
⋅
V
d
s
_
m
a
x
V
d
=
V
o
+
V
i
_
m
a
x
n
<
α
2
⋅
V
d
_
m
a
x
\left\{\begin{aligned} V_i = n\cdot V_o\cfrac{1-D{m}ax}{D{max}}<V_{i\_min}\\ V_{ds} = n V_o+V_{i\_max}<\alpha_1\cdot V_{ds\_max}\\ V_{d} = V_o+\cfrac{V_{i\_max}}{n}<\alpha_2\cdot V_{d\_max} \end{aligned}\right.
⎩
⎨
⎧Vi=n⋅VoDmax1−Dmax<Vi_minVds=nVo+Vi_max<α1⋅Vds_maxVd=Vo+nVi_max<α2⋅Vd_max
\qquad
α
1
,
α
2
\alpha_1, \alpha _2
α1,α2(取0.6,0.6)分别是MOS管和二极管的降额系数,在RCD合适的电路中,由于MOS管的Vds一般很大,所以一般只有输入输出关系决定右边界,带入有:
V
i
_
m
a
x
V
d
m
a
x
⋅
α
2
<
n
<
m
i
n
(
V
i
_
m
i
n
V
o
(
1
−
D
m
a
x
)
,
V
D
S
m
a
x
⋅
α
1
−
V
i
_
m
a
x
V
o
)
n
1
=
n
2
=
6
,
n
3
=
18
,
n
4
n
4
=
n
5
=
8
\cfrac{V_{i\_max}}{V_{d_max}\cdot\alpha_2}<n<min(\cfrac{V_{i\_min}}{V_o(1-D_{max})},\cfrac{V_{DSmax}\cdot \alpha_1-V_{i\_max}}{V_{o}})\\ n_1 = n_2= 6,n_3 =18, n_4 n_4 =n_5= 8
Vdmax⋅α2Vi_max<n<min(Vo(1−Dmax)Vi_min,VoVDSmax⋅α1−Vi_max)n1=n2=6,n3=18,n4n4=n5=8
\qquad 匝比可以不是整数,这里匝比只是初略选择,方便后续计算匝数。值得一提的是,很多文献和参考书中喜欢使用反射电压Vor来计算。
下一步确定原边电感量Lp
Δ
I
p
=
V
i
D
m
a
x
L
p
f
d
e
f
:
k
r
p
=
Δ
I
p
2
I
E
D
C
=
Δ
I
p
U
i
D
m
a
x
2
P
i
}
→
L
p
=
V
i
2
D
m
a
x
2
2
k
r
p
P
i
f
\left.\begin{aligned} \Delta I_p = \cfrac{V_iD_{max}}{L_pf}\\ def: krp = \cfrac{\Delta I_p}{2I_{EDC}}=\cfrac{\Delta I_pU_iD_{max}}{2P_i} \end{aligned}\right\}\rightarrow L_p=\cfrac{V_i^2D_{max}^2}{2k_{rp}P_if}
ΔIp=LpfViDmaxdef:krp=2IEDCΔIp=2PiΔIpUiDmax⎭
⎬
⎫→Lp=2krpPifVi2Dmax2
\qquad
一般而言,设计 CCM 模式的反激变换器,宽压输入时(90~265VAC),KRF取 0.25~0.5;窄压输入时(176~265VAC),KRF取 0.4~0.8 即可。
带入计算得Lp>2.894mH,由此计算出峰值电流Ipk = 0.9376A
\qquad
选择合适的磁芯,磁芯的选择可以参考下表
\qquad
这里选择EE30/30/07磁芯进行设计。EE30/30/07相关参数如下
{
Δ
B
=
V
i
D
T
s
N
p
A
e
=
V
o
(
1
−
D
)
T
s
N
s
A
e
B
d
c
=
μ
0
μ
r
N
p
I
i
+
∑
I
o
N
s
l
g
B
m
=
B
d
c
+
Δ
B
2
\left\{\begin{aligned}\Delta B = \cfrac{V_iDT_s}{N_pA_e} = \cfrac{V_o(1-D)T_s}{N_sA_e}\\ B_{dc} = \mu_0\mu_r\cfrac{N_pI_i+\sum I_oN_s}{l_g}\\ B_m=B_{dc}+\cfrac{\Delta B}{2} \end{aligned}\right.
⎩
⎨
⎧ΔB=NpAeViDTs=NsAeVo(1−D)TsBdc=μ0μrlgNpIi+∑IoNsBm=Bdc+2ΔB
\qquad
考虑饱和磁密Bm,显然
Δ
B
\Delta B
ΔB与截面积成反比,输入电压Ui增大,Ii减小,Bdc增大,
Δ
\Delta
Δ B变大,Bm总体趋势是变小的,因此要在输入电压最小时设计Bm。
\qquad
选择PC95磁性材料,PC95相关参数如下,可以看到PC65的初始磁导率较大,单位体积磁芯损耗较小(剩磁、矫顽力较小),图中可以看出饱和磁密Bs = 530mT,那么Delta B 取 400mT计算.
N
p
=
V
i
D
A
e
Δ
B
f
N_p = \cfrac{V_i D}{A_e\Delta Bf}
Np=AeΔBfViD
\qquad
带入上式和匝比得到Np = 90,Ns1 = Ns2 = 15,Ns3 = 5,Ns4 =Ns5 = 12
\qquad
校验最小截面积,变压器工作时Bmax < = 0.45T,带入计算最小Ae得75.37,小于手册的Ae
A
e
>
ψ
N
p
B
m
a
x
=
L
p
I
p
k
N
p
B
m
a
x
A_e >\cfrac{\psi}{N_pB_{max}}=\cfrac{L_pI_{pk}}{N_pB_{max}}
Ae>NpBmaxψ=NpBmaxLpIpk
校验窗口面积
\qquad
变压器的磁芯窗口面积Aw要使得线圈绕下,记Sp,Ss分别是副边导线的截面积,Ku为窗口系数(0.4),J是允许的电流密度(5A/mm2)。先确定确定原边线径Sp1,副边线径SS1,SS2,SS3,SS4,SS5,高频电流在导体中会有趋肤效应,因此,在确定线经时还要计算不同频率时导体的穿透深度。计算出的线径D大于两倍的穿透深度即可,否则需要多股并绕。
D
=
1.13
I
J
d
=
1
π
f
μ
r
μ
0
r
66.1
f
D =1.13\sqrt{\cfrac{I}{J}}\\ d = \cfrac{1}{\sqrt{\pi f \mu_r \mu_0 r}}\cfrac{66.1}{\sqrt{f}}
D=1.13JId=πfμrμ0r1f66.1
\qquad
为统一线径,目前选的线径是0.3mm

β
⋅
V
e
P_c =C_m\cdot f^\alpha (\cfrac{\Delta B}{2})^\beta\cdot V_e
Pc=Cm⋅fα(2ΔB)β⋅Ve
\qquad
为方便计算,按照上述步骤,做了一个excel表格。上述的计算和相关的磁性器件手册链接: 反激电源学习
实物图分析
变压器等效模型
\qquad
当然,在原边和副边都存在分布电容,但一般可以忽略不计,变压器绕组模型如前面所示,可以使用电桥测试同名端
\qquad
实物图直接给出如下
\qquad
这里的主要难点在于使用TL431构成的反馈电路,这涉及到开关电源控制环路设计的知识,很麻烦,这里先不分析。
\qquad 开关电源的学习主要分为,开关模态学习、磁性元器件设计、小信号建模、控制环路设计、离散化(数字)控制、热管理等,每一个过程对我来说都好难啊,呜呜呜