逛b站的时候突然看到Dify 这个平台介绍,感觉和公司内容的AI 工作台的流程编排页面非常像,然后了解了一下,原来是由国内苏州语灵人工智能科技公司推出的一款开源大语言模型(LLM)应用开发平台 ,在国内Agent领域,Dify 还是非常热门的。
1. Dify 是干什么的 ?
官网定义:Dify.AI · The Innovation Engine for Generative AI Applications
Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。
(Dify 的架构图)
Dify 支持的模块:
国内和Dify 类似的平台还有字节的coze (www.coze.cn),网上也有评论说这两个平台的后面会越来越难,因为它主打纯手工的编排处理任务的方式,但是随着manus 的爆红,用户输入指令可以让agent 自己去自循环执行工具调用,给出反馈再循环执行,必要的时候才需要人工介入。感觉在AI 百花齐放的元年里面,任何平台的火热感觉都会是百花一现,有时候觉得这个记录试用这些平台的过程也会是一个有意思的过程,因为很可能不出多久,它们就要销声匿迹了。(此时不知道为何想得到了百度搜索~)
2. Dify 生成SQL语句
github 的使用文档:https://github.com/langgenius/dify/blob/main/README_CN.md
使用dify 既可以在云服务中使用,也可以在本地环境中进行部署
Dify 和扣子一样,支持Agent 创建,工作流创建,编程等,还有各种模版支持选择,大概这些平台的功能都是类似的,会不会各大平台卷到最后,只剩下一家独大了,静观其变
选择做一个自然语言生成sql 生成的agent
模型配置:
调试:
后台监控 ,有agent 访问页面,接口即调用情况查看 :
查看监测里面有运行网址:
3. Coze做个智能生成测试用例的需求
感觉扣子的页面比Dify 使用起来操作便利性更强一些,体验一下~
使用文档:扣子 (国内平台看文档 就是方便易懂)
那么来用Coze 来做一个输入需求生成测试用例的Agent 吧。
3.1. 创建Agent
3.2. 编排页面
创建对话agent 完之后就进到了下面这个页面:
平台本身也会有一些提示词模版推荐,也可以通过让AI 直接生成,然后使用,都还蛮方便的。
然后就可以直接调试了,使用的deepseek-R1 的模型:
看起来输出的用例格式也会按照提示词的格式要求返回,还是很详细的。
3.3. 添加工具
除了输入提示词,也可以额外引入一些工具 ,添加工作流之类的,先不添加了~
例如让你的智能体在找不到答案的时候,可以通过搜索来回答,修改提示词即可
修改提示词:
3.4. 发布智能体
从开发到发布,几分钟就完成了,还是非常高效的
本来想着选择发布到小程序上 ,但是发现目前不支持个人主体的公众号发布,那就授权到微信订阅号,发布后即可通过微信公众号对话了
然后就可以给我自己的公众号发消息进行回复了,一开始应该生成超时了,让它简单回答就能给出答案了 ,整个过程下来还是很智能的,操作也很简单。
3.5. 后台运营
平台还提供了相关的用户输入日志查看,模型管理和相关的评测,模型输入token和输出token 都可以看到,目前个人试用还是免费的。
coze 也支持流程编排型的应用发布,官方也提供了很多程序模版,这里先不试用了(这里和阿里内部的AI Studio 平台页面非常像了~)
3.6. 试用体验
整个coze 的使用体验下来还是操作蛮便捷的,文档也比较完善,个人体验使用也不收我钱,好评~
4. 总结
整个dify 和Coze使用下来,感觉操作体验还是Coze 相对来说更友好,感觉Agent 的生成还是非常便捷的,当然上面都是一些非常非常简单的实践例子, 真要落地到实践应用上面,还需要经过不断的部署,调试,模型优化,成本预算等等,突然感觉其实也不必神话当前的AI 的作用,还有最近投资界对AI 机器人实践落地前景的不大看好,短期内成本高,效果不明显,AGI 的到来或许还需要一些时间~