AirLLM 技术文档

AirLLM 技术文档

Anima 33B Chinese LLM, DPO QLORA, 100K context, AirLLM 70B inference with single 4GB GPU Anima 项目地址: https://gitcode.com/gh_mirrors/an/Anima

1. 安装指南

1.1 环境要求

  • 操作系统: 支持 Linux、MacOS 和 Windows。
  • GPU: 最低要求 4GB VRAM,推荐 8GB VRAM 以支持更大模型的推理。
  • Python: 版本 3.7 或更高。

1.2 安装步骤

  1. 克隆项目仓库

    git clone https://github.com/lyogavin/airllm.git
    cd airllm
    
  2. 安装依赖

    pip install -r requirements.txt
    
  3. 验证安装

    python -c "import airllm; print(airllm.__version__)"
    

2. 项目使用说明

2.1 基本使用

AirLLM 旨在优化大语言模型的推理内存使用,使得在单张 4GB GPU 卡上也能运行 70B 参数的模型。以下是一个基本的使用示例:

from airllm import AirLLM

# 初始化模型
model = AirLLM(model_name="70B")

# 进行推理
output = model.infer("你好,世界!")
print(output)

2.2 高级使用

AirLLM 支持在 8GB VRAM 的 GPU 上运行 405B 参数的 Llama3.1 模型。以下是一个高级使用示例:

from airllm import AirLLM

# 初始化 Llama3.1 模型
model = AirLLM(model_name="405B_Llama3.1")

# 进行推理
output = model.infer("这是一个高级示例。")
print(output)

3. 项目 API 使用文档

3.1 AirLLM

  • __init__(self, model_name: str):

    • 参数:
      • model_name: 模型名称,支持 "70B" 和 "405B_Llama3.1"。
    • 返回值: 返回一个 AirLLM 实例。
  • infer(self, input_text: str):

    • 参数:
      • input_text: 输入文本。
    • 返回值: 返回模型的推理结果。

3.2 示例代码

from airllm import AirLLM

model = AirLLM(model_name="70B")
output = model.infer("你好,AirLLM!")
print(output)

4. 项目安装方式

4.1 通过 pip 安装

pip install airllm

4.2 通过源码安装

git clone https://github.com/lyogavin/airllm.git
cd airllm
pip install .

通过以上步骤,您可以顺利安装并使用 AirLLM 项目。如有任何问题,请参考项目 GitHub 仓库 或提交 Issue。

Anima 33B Chinese LLM, DPO QLORA, 100K context, AirLLM 70B inference with single 4GB GPU Anima 项目地址: https://gitcode.com/gh_mirrors/an/Anima

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惠颉飞Wyman

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值