AirLLM:突破显存限制,让 4GB GPU 也能运行 70B 大模型

大语言模型(LLM)的参数规模不断扩大,但随之而来的是对计算资源的巨大需求。想要运行一个 70B 参数的模型,通常需要数百 GB 的显存。这无疑提高了使用门槛。今天介绍一个推理加速的库——AirLLM,它让我们可以在仅有 4GB 显存的 GPU 上运行 70B 级别的Qwen,甚至可以在 8GB 显存上运行 405B 的 Llama3.1 。这是如何实现的?让我们一起来了解一下。

在这里插入图片描述

AirLLM 的核心原理

AirLLM 的核心思想是基于"分而治之"的策略,通过层次推理(layered inference)来优化内存使用。

  • 层次独立性:大语言模型通常由多个相同的 Transformer 层组成。在推理过程中,每一层只依赖于前一层的输出,这意味着我们可以逐层处理。

  • 动态加载与释放:AirLLM 只在需要时从磁盘加载特定层,完成计算后立即释放内存。这大大减少了同时占用的 GPU 内存。

  • 元设备加载:利用 Hugging Face Accelerate 提供的 meta device 功能,初始加载时只读取模型结构,不加载实际参数,从而实现零内存占用的模型加载。

  • Flash Attention 优化:使用 Flash Attention 技术深度优化 CUDA 内存访问,实现多倍的速度提升。

AirLLM 使用方法

使用 AirLLM 非常简单,以下是一个基本的使用示例:

from airllm import AutoModel  
  
MAX_LENGTH = 128  
# could use hugging face model repo id:  
model = AutoModel.from_pretrained("garage-bAInd/Platypus2-70B-instruct")  
  
# or use model's local path...  
#model = AutoModel.from_pretrained("/home/ubuntu/.cache/huggingface/hub/models--garage-bAInd--Platypus2-70B-instruct/snapshots/b585e74bcaae02e52665d9ac6d23f4d0dbc81a0f")  
  
input_text = [  
        'What is the capital of United States?',  
        #'I like',  
    ]  
  
input_tokens = model.tokenizer(input_text,  
    return_tensors="pt",   
    return_attention_mask=False,   
    truncation=True,   
    max_length=MAX_LENGTH,   
    padding=False)  
             
generation_output = model.generate(  
    input_tokens['input_ids'].cuda(),   
    max_new_tokens=20,  
    use_cache=True,  
    return_dict_in_generate=True)  
  
output = model.tokenizer.decode(generation_output.sequences[0])  
  
print(output)  

这段代码演示了如何使用 AirLLM 加载一个 70B 参数的 Platypus2 模型,并进行简单的文本生成。

进一步优化

AirLLM 不仅解决了内存问题,还提供了模型压缩功能,进一步提升了推理速度:

  • 块级量化模型压缩:支持 4 位和 8 位块级量化(block-wise quantization),与全局量化不同,块级量化是对模型的权重矩阵进行分块处理。每个块可以根据其重要性进行不同的量化,从而提高压缩效率和模型性能。,这一方法可将推理速度提升至 3 倍,同时保持模型精度。

  • 预取机制:通过预取技术,实现模型加载与计算的重叠,提升约 10%的速度。

  • 多模型支持:除了 Llama 系列,AirLLM 还支持 ChatGLM 、QWen 、Baichuan 、Mistral 和 InternLM 等多种模型。

局限性

尽管 AirLLM 在低内存环境下运行大模型方面取得了突破,但它也存在一些局限性:

  • 延迟增加:由于需要频繁从磁盘读取数据,整体推理延迟会显著增加。

  • I/O 瓶颈:推理速度受限于 SSD 的读取速度,这可能成为性能瓶颈。

  • RAM 利用:目前 AirLLM 还不支持将模型层卸载到系统 RAM,而是直接使用 SSD 。

针对这些问题,AirLLM可以在以下方面进行优化:

  • 优化数据读取策略,减少 I/O 瓶颈

  • 支持将模型层卸载到系统 RAM

  • 进一步提升量化技术,在保持精度的同时减小模型体积

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### DeepSeek-R1-70B 模型推理所需最低显存要求 对于 DeepSeek-R1-Distill-Llama-70B 的推理过程,该模型经过优化后具有更快的推理速度以及更高效的资源利用效率[^1]。然而,具体的最低显存需求取决于多个因素,包括但不限于所使用的硬件平台、框架版本和支持的技术特性。 通常情况下,大型语言模型如 DeepSeek-R1-70B 需要大量的 GPU 显存来支持其参数存储和计算操作。根据一般的经验法则,未进行量化处理前,每十亿个参数大约需要 4GB 到 8GB显存空间。考虑到 DeepSeek-70B 是一个拥有约七十亿参数的大规模预训练模型,理论上至少需要 280 GB 至 560 GB显存才能满足完全加载的要求。 但是,实际应用中很少会直接在单张卡上部署如此大规模的模型。为了降低对单一设备显存的需求,可以采用多种技术手段: - **混合精度浮点运算**:通过 FP16 或 BF16 数据类型减少一半以上的显存量。 - **分布式推理**:将模型切分到多张 GPU 卡上来分散内存压力。 - **激活重计算(Checkpointing)**:牺牲部分性能换取更低的峰值显存占用率。 - **稀疏化与剪枝**:移除冗余连接或节点从而减小整体尺寸。 - **量化方法**:比如 INT8 定点数表示法可显著节省显存并加速推断流程。 因此,在采取适当措施之后,DeepSeek-R1-70B 可能在具备较高配置的工作站级 GPU 上实现有效的推理任务,例如 NVIDIA A100 (40GB/80GB),甚至是在某些条件下可以在消费级别的 RTX 3090 Ti (24GB) 类似规格的产品上尝试运行简化后的版本。 值得注意的是,如果按照提供的代码片段 `model_dir = snapshot_download('okwinds/DeepSeek-R1-Distill-Qwen-7B-Int8-W8A16')` 所指示的方式下载了一个已经过量化的较小版本,则相应的显存消耗也会大幅下降至更加合理的水平[^2]。 ```python import torch device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using {device} device") if device == 'cuda': gpu_memory_mb = torch.cuda.get_device_properties(0).total_memory / 1e6 else: gpu_memory_mb = None print(f'GPU Memory: {"{:.2f}".format(gpu_memory_mb)} MB') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值