自动控制原理 胡寿松 复习 从基础知识点到MATLAB实现

本文介绍了反馈控制的原理,按偏差和扰动控制的分类,以及控制系统数学模型在时域、复数域和频域的表现。重点讲解了模态的概念及其在设计中的应用,涉及Simulink工具箱和传递函数、零极点模型转换。文章还讨论了动态响应、噪声抑制及其平衡关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章

反馈控制的原理

(反馈控制实质上就是按偏差的控制)

按职能对组成系统的元件进行分类

按偏差控制和按扰动控制

自动控制系统的分类

线性连续控制系统(能用线性微分方程式描述),包括:

典型外作用

第二章 控制系统的数学模型

控制系统的数学模型,时域中包括:

复数域中包括:

频域中包括:

模态:

在自动控制原理中,模态(Mode)是指系统在不同工作状态或操作模式下的行为和特性。模态描述了系统响应输入和外部扰动时的动态行为,并且不同的模态可能具有不同的稳态特性和动态响应。

在一个自动控制系统中,可以有多个模态,每个模态代表系统处于不同的工作状态。例如,在一个温度控制系统中,可以有“加热模态”和“冷却模态”,分别对应系统需要加热和冷却的状态。每个模态下,系统的控制策略、传感器输入、执行器输出等都可能不同。

通过对不同模态的建模和分析,可以更好地理解和设计自动控制系统,以便根据当前的工作状态做出相应的控制决策和调整参数,以满足系统的要求和性能。

控制类工具箱包括:

Simulink模块

system identification system

control system toolbox

robust rontrol system

model predictive control toolbox

fuzzy logic toolbox

nonlinear control design blocket
G=zpk([],[a b c],d);
Ka=40;
sys=feedback(Ka*G,1);
t=t1:step_length:t2;
step(sys,t);
grid;
axis([0,1,0 1.2]);

传递函数包括一般形式和零极点型,两个模型之间切换的代码为

%%传递函数包括一般形式和零极点型,两个模型之间切换的代码为
[num,den]=zp2tf(z,p,k);
[z,p,k]=tf2ap(num,den)

%% 创建传递函数模型
G1=tf(num,den);
G2=zpk(z,p,k);
%%关键参数的提取
[num,den]=tfdata(G1);
[z,p,k]=zpkdata(G2);

%%
Eigenvalue=eig(G); %求特征值
Zeros=zero(G); %求系统零点
Poles=pole(G); %求系统极点
pzmap(G); %绘制系统所有的零极点
Key=isstable(G); %系统稳定时Key=1
GG=feedback(G,1);  %已知G为开环传递函数,需计算单位负反馈闭环系统模型


%%根轨迹相关
rlocus(G);  %绘制根轨迹曲线,不返回变量
rlocus(G,K); %绘制给定增益向量的根轨迹
[R,K]=rlocus(G); %求闭环系统特征根构成的复数矩阵
rlocus(G1,'-',G2,'b');  %绘制多个系统的根轨迹

%%bode图相关
bode(G);
[mag,phase,omega]=bode(num,den);  //幅值的分贝值mag_db=20lg(mag);phase为幅角相量;omega为频率向量
[Gm,Pm,wg,wc]=margin(num,den); //增益裕度,相位裕度,增益交叉频率,相位交叉频率
printsys=(sum,den,'s');  //打印传递函数

第五章

动态响应和噪声抑制为什么需要兼顾?两者冲突吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值