半导体器件与物理篇1 热平衡时能带和载流子浓度

我撰写的目的是降低半导体物理的理解门槛,所以很多内容在表达上并不规范。我会为了尽可能简单地保留重点而放弃一些严谨性。

什么是半导体?为什么要讲器件与物理?

半导体器件和物理应该分为两边看。半导体物理研究的是电子与空穴的运动规律;半导体器件研究的是器件在不同方面的电性能与光性能。

半导体器件与物理研究的目的是用能带裁剪工艺构造势垒结构,从而控制载流子运动

半导体工业的核心是集成电路。集成电路的定义是用平面电路工艺,由有源和无源器件组成,靠电路互联并集成在单晶片上,封装在外壳中的具有特定功能的复杂电路。这概念是不是很复杂?我们把它拆开来看

本质特征
具有特定功能的复杂电路工艺用平面电路
组成由有源和无源器件
互联靠电路
“集成”在单晶片上
封装在外壳中

半导体的基本结构

半导体的基本结构有4种,分别是金属-半导体、pn-结、异质结、金属-氧化物-半导体结构。
金属-半导体的关键词是整流效应,典型应用是金半场效应晶体管mesfet.

异质结的特点是两片半导体材料不同。金属氧化物半导体结构也就是MOS结构,典型应用如金氧半场效应晶体管。最典型的例子是cmos,它的特点是仅在逻辑状态转化时才有大电流,故功耗小。

摩尔定律

摩尔定律:每18个月芯片集成度增加一倍。

它的物理基础是器件等比例缩小定理。

器件等比例缩小定理的内涵是mosfet横向纵向尺寸缩小k倍,面积缩小k的平方倍,性能提高k的三次方。

为了实现器件的缩小而提出的技术:有沟槽隔离、化学机械抛光、铜布线。

封测有封装和硅片测试两个方面。

封装的目的是保护芯片,粘贴芯片到更高级的装配板上。
硅片测试测的是电集成电路的电学参数,目的是检验硅片的规格一致性和电学性能是否可以接受。

热平衡时的能带和载流子浓度

半导体有元素,半导体和化学,半导体化学,半导体的优点是具有与元素半导体不同的光电特性,可以供使用,缺点是制备程序更复杂,技术不成熟

晶体结构

半导体材料的结构为单晶结构,其典型的结构分类包括立方、面心立方、体心立方、密排六方、金刚石结构、闪锌矿结构
金刚石结构的形态:由两个同种原子组成的主副面心立方嵌构而成。当主副面心立方的组成员子不一致时,得到闪锌矿结构
半导体材料的结构为单晶结构,将单晶结构的整体结构进行抽象,得到晶格
晶格的定义:晶体中原子的周期性排列
晶格中最小的一部分则是单胞
单胞的定义:周期性排列的最小单元
单胞朝某方向延伸和复制,可以复原晶格
单包所延伸的一组方向(如三维结构中的一组就有三个)则是晶格常数
晶格常数的其中一个叫晶格参数
晶格常数用向量组表示为: R → = m a → + n b → + p c → \overrightarrow{R}=m\overrightarrow{a}+n\overrightarrow{b}+p\overrightarrow{c} R =ma +nb +pc
晶格常数用密勒指数来描述晶面方向
密勒指数的获取方法:
1.取截距
2.取倒数
3.化简为(hkl)
让我们来辨析一下hkl大家族
m
(hkl)为一个晶面;取(hkl)相反的一组晶面,为( h ‾ \overline{h} hkl);可见,h.k.l都可以取一个反方向,这些反方向集合起来就得到“一族等价对称晶面”{hkl}。
如果取垂直于晶面(hkl)的一个晶相,则得到[hkl];同样h.k.l都可以取一个反方向,这些反方向集合起来得到“一族等价晶相”

共价键

金刚石晶格中共用电子形成共价键
共价键是由不同原子共用时产生的。共价键的存在方式,结合电子观通俗地讲,就是在化合物中,公用电子在正离子的原子范围内停留的时间稍长

载流子:低温时,电子分别被束缚于四面体晶格中的相应位置,因此它们无法用于导电。

用能量打断共价键后得到载流子。

载流子的定义:半导体中可移动的电子和空穴

波尔能级模型

接下来,我们将使用玻尔能级模型。什么是波尔能级模型呢?这里举一个的典型例子,那就是氢的波尔能级模型:
E H = − m 0 q 4 8 ε 0 h 2 n 2 = − 13.6 n 2 E_H=-\frac{m_0q^4}{8\varepsilon_0 h^2n^2}=-\frac{13.6}{n^2} EH=8ε0h2n2m0q4=n213.6
自由电子质量 m 0 m_0 m0,电荷量q,真空介电常数 ε 0 \varepsilon_0 ε0 h = 6.63 ⋅ 1 0 − 34 J ⋅ s h=6.63\cdot 10^{-34} J\cdot s h=6.631034Js普朗克常量,n主量子数(取自1,2,3,…)

氢原子可以用表示波尔能级模型,但其他原子并不具备氢这种仅有一个电子的情况。更何况当原子形成了键,那么原子之间就会相互影响,其中就包括影响对方的电子。
m
万物最终都会趋于平衡。当两个原子就像小夫妻一样,经过前期能量剧烈的磨合后,逐渐地趋于安稳。
如有N个原子形成一个固体,不同原子外层电子的轨道重叠且相互作用,这种相互作用包括任意原子间的引力和斥力,将造成能级的移动。当N很大时,将形成连续的能带。视晶体内原子的间距不同,这N个能级形成的能带可延展至几个电子伏特。
此时平衡状态下的原子间距为a,形成了导带 E c E_c Ec和价带 E v E_v Ev

在绝对零度时,电子占据最低能态,因此在较低能带(即价带)的所有能态将被电子填满,而在较高能带(即导带)的所有能态将没有电子。

禁带宽度

禁带宽度 E g = E c − E v E_g=E_c-E_v Eg=EcEv,顾名思义就是禁止能量的间隔。它表示将半导体价带中的电子断键,变成自由电子并送到导带,而在价带中留下一个空穴所需的能量。

当半导体的价带顶部 E v E_v Ev和导带底部 E c E_c Ec处于同一动量p时,为直接带隙半导体;处于不同的动量p时,则是间接带隙半导体。
直接带隙半导体由于具有易激发的特性,可以应用于发光二极管和激光。

导体、半导体、绝缘体

既然我们学习了波尔能级模型,那么能否使用波尔能级模型去理解半导体呢?
答案是可以的。
电子在最高能带或最高两能带的占有率决定此固体的导电性。金属就是价带与导带重合,或者导带一直有电子的材料;半导体是禁带宽度 E g E_g Eg约为1ev的材料;绝缘体是禁带宽度 E g E_g Eg过大(如超过9ev)的材料。

自由电子的能量

单一自由电子能量: E = p i → p j → 2 m 0 = p 2 2 m 0 E=\frac{\overrightarrow{p_i}\overrightarrow{p_j}}{2m_0}=\frac{p^2}{2m_0} E=2m0pi pj =2m0p2
其中p是动量。p的平方,实际上是矢量的平方,因此如果我们想用自由电子能量E和动量p来描述 m 0 m_0 m0的话,需要对矢量的两个方向分别进行微分才能得到,过程如下:

m 0 = ( ∂ 2 E ∂ p i ∂ p j ) − 1 = ( ∂ 2 E ∂ p 2 ) − 1 m_0=(\frac{\partial^2E}{\partial p_i \partial p_j})^{-1}=(\frac{\partial^2E}{\partial p^2})^{-1} m0=(pipj2E)1=(p22E)1
将其中的 m 0 m_0 m0自由电子质量换为有效质量 m n m_n mn,可以得到其他原子的能量表达式 E n = p 2 2 m n E_n=\frac{p^2}{2m_n} En=2mnp2

单一的自由电子能量已经知道了,但是当不同的原子进行结合,那么另一个原子会对电子产生作用,这个时候就会产生导带 E c E_c Ec、价带 E v E _v Ev和禁带宽度 E g E_g Eg。其中有一些典型的禁带宽度值需要牢记,比如常温常压下(kT=300)硅Si的禁带宽度 E g = 1.12 e V E_g=1.12eV Eg=1.12eV,砷化镓GaAs的禁带宽度 E g = 1.42 e V E_g=1.42eV Eg=1.42eV

硅和砷化镓的带隙与压力的关系,也可以称为禁带宽度与应力的关系。Si的禁带宽度随压力的上升而下降。GaAs的带隙随压力的下降而上升。

热平衡状态

热平衡状态的定义:在给定温度下(如常温下kT=300K),无任何外来扰动(如光照、压力或电场);持续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴的一种稳定状态。热平衡状态下载流子浓度不变。

显然,热平衡状态的定义有点长,但仍需要牢记这些知识点。因此我们将热平衡状态进行分解,可以得到两个内在本质特性和两个外在表象特征。

两个内在本质特性是:给定温度下的稳定状态;无任何外来扰动如光照压力或电场。

两个外在表象特征是:在给定温度下持续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴;热平衡状态下载流子浓度不变。

导带中电子浓度的表达式 n = ∫ 0 E t o p n ( E ) d E = ∫ 0 E t o p N ( E ) F ( E ) d E n=\int_0^{E_{top}} n(E)dE=\int_0^{E_{top}} N(E)F(E)dE n=0Etopn(E)dE=0EtopN(E)F(E)dE
单位体积内允许的能态密度 N C N_C NC F ( E ) F(E) F(E)一个电子占据能量E范围的几率或者是能量为E的能态被空穴占据的几率,别称是费米分布函数。

费米能级 E F E_F EF的定义:电子占据率为50%的能级能量

用费米能级 E F E_F EF和能量E定量地描述费米分布函数 F ( E ) F(E) F(E) F ( E ) = 1 1 + e E − E F k T F(E)=\frac{1}{1+e^{\frac{E-E_F}{kT}}} F(E)=1+ekTEEF1
E − E F < 3 k T E-E_F<3kT EEF<3kT时, 1 1 + e E − E F k T ≈ e x p ( − E − E F k T ) \frac{1}{1+e^{\frac{E-E_F}{kT}}}\approx exp(-\frac{E-E_F}{{kT}}) 1+ekTEEF1exp(kTEEF)

于是可以得到 F ( E ) F(E) F(E)的另一个表达式: F ( E ) ≈ e x p ( − E − E F k T ) F(E)\approx exp(-\frac{E-E_F}{{kT}}) F(E)exp(kTEEF)
波尔兹曼常数 k k k;绝对温度 T T T,单位为“以开(K)”

本征半导体

本征半导体的定义:杂质数量远小于热激发产生的电子和空穴的半导体

本征半导体的特点:

1.其费米能级位置近似于禁带中间;
用费米能级和导带中的有效态密度表示的导带电子密度为 n = N c e x p ( − E c − E F k T ) n=N_cexp(-\frac{E_c-E_F}{kT}) n=Ncexp(kTEcEF)
用费米能级和价带中的有效态密度表示的价带空穴密度为 p = N v e x p ( − E F − E v k T ) p=N_vexp(-\frac{E_F-E_v}{kT}) p=Nvexp(kTEFEv)
E F E_F EF越接近 E v E_v Ev时, p p p越接近 N v N_v Nv n n n同理

2.导带中的电子与价带中的空穴浓度相同,表达式为本征钾离子浓度,电子浓度,空穴浓度
已知适用于所有半导体的一条定律——质量作用定律:化学反应的速率与反应物的有效质量(即浓度)成正比, n p = n i 2 np=n_i^2 np=ni2\f
已知导带的电子浓度为: n = N C e x p ( − E C − E F k T ) n=N_Cexp(-\frac{E_C-E_F}{kT}) n=NCexp(kTECEF)价带中的空穴浓度为: p − N V e x p ( − E F − E V k T ) p-N_Vexp(-\frac{E_F-E_V}{kT}) pNVexp(kTEFEV)
导带电子浓度和加载电子浓度的表达式代入质量作用定律得到: n i = N C N V e x p ( − E g 2 k T ) n_i=\sqrt{N_CN_V}exp(\frac{-E_g}{2kT}) ni=NCNV exp(2kTEg)

3.禁带宽度越大,本征载流子浓度越小

本征半导体相关参数

本征载流子浓度:对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为 n = p = n i n=p=n_i n=p=ni:

本征费米能级的定义:本征半导体的费米能级。
同时一些室温下(300K)重要的常数需要牢记:

普朗克常量 h = 6.63 ⋅ 1 0 − 34 J ⋅ s h=6.63\cdot 10^{-34} J\cdot s h=6.631034Js-
Si N c = 2.86 × 1 0 19 c m − 3 N_c=2.86\times 10^{19} cm^{-3} Nc=2.86×1019cm3
- N v = 2.66 × 1 0 19 c m − 3 N_v=2.66\times 10^{19} cm^{-3} Nv=2.66×1019cm3
- n i = 9.65 × 1 0 9 c m − 3 n_i=9.65\times 10^{9} cm^{-3} ni=9.65×109cm3
GaAs N c = 4.7 × 1 0 17 c m − 3 N_c=4.7\times 10^{17} cm^{-3} Nc=4.7×1017cm3
- N v = 7.0 × 1 0 18 c m − 3 N_v=7.0\times 10^{18} cm^{-3} Nv=7.0×1018cm3
- n i = 2.25 × 1 0 6 c m − 3 n_i=2.25\times 10^{6} cm^{-3} ni=2.25×106cm3

非本征半导体

非本征半导体的定义:掺入了杂质,引入了杂质能级的半导体。
这条定义中有两个重要的量,分别是杂质和杂质能级。
杂质包括施主doner和受主acceptor,施主的浓度为 N D N_D ND;受主的浓度叫 N A N_A NA

杂志能级和波尔能级模型一样,可以由氢原子的杂质能级 E H = − m 0 q 4 ε 2 h 2 n 2 E_H=-\frac{m_0q^4}{\varepsilon^2 h^2 n^2} EH=ε2h2n2m0q4推向各种原子。我们使用不同材料的介电常数 ε s \varepsilon_s εs和有效质量 m n m_n mn进行换算,得到的表达式如下: E D = ( ε 0 ε s ) 2 × ( m n m 0 ) 2 × E H E_D=(\frac{\varepsilon_0}{\varepsilon_s})^2\times(\frac{m_n}{m_0})^2\times E_H ED=(εsε0)2×(m0mn)2×EH

非本征半导体的分类包括非简并半导体和简并半导体。

非简并半导体

非简并半导体的定义:电子或空穴的浓度远低于导带或价带中的有效态密度的半导体。

用费米能级 E F E_F EF与能带( E c E_c Ec E v E_v Ev)的方式描述非简并半导体的定义,即: E F E_F EF E c E_c Ec低3kT,或 E F E_F EF E v E_v Ev高3kT还多。

通常对硅及砷化镓中的浅层受主而言,室温下即有足够的热能,供给将所有施主杂质电离所需的能量E,因此可在导带中提供与所有施主杂质等量的电子数,即可移动的电子及不可移动的施主离子二者浓度相同。这种情形称为完全电离。在完全电离的情形下,电子浓度为 n = N D n=N_D n=ND

完全电离

完全电离的定义:室温下就能提供施主或受主杂质足够的电离能 E D E_D ED,即可移动的电子浓度 n = 施主杂质浓度 N D n=施主杂质浓度N_D n=施主杂质浓度ND和可移动的空穴浓度 p = 受主杂质浓度 N A p=受主杂质浓度N_A p=受主杂质浓度NA

掺杂施主杂质时,我们换算 n = N c e x p ( − E c − E F k T ) n=N_cexp(-\frac{E_c-E_F}{kT}) n=Ncexp(kTEcEF),得到从导带底部算起的费米能级 E c − E F = k T ⋅ l n ( e N c N D ) E_c-E_F=kT\cdot ln(e\frac{N_c}{N_D}) EcEF=kTln(eNDNc);从本征费米能级 E i E_i Ei算起的费米能级: E F − E i = k t ⋅ l n ( n n i ) E_F-E_i=kt\cdot ln(\frac{n}{n_i}) EFEi=ktln(nin)
掺杂受主杂质时,从价带顶部算起的费米能级: E F − E v = k t ⋅ l n ( N v N A ) E_F-E_v=kt\cdot ln(\frac{N_v}{N_A}) EFEv=ktln(NANv)

非简并半导体的载流子浓度

上一节我们知道了可以用费米能级计算载流子浓度,如 n = N c e x p ( − E c − E F k T ) n=N_cexp(-\frac{E_c-E_F}{kT}) n=Ncexp(kTEcEF)

那如何用本征费米能级来计算载流子浓度呢?
这里直接给出公式,推导过程就省略了: { n = n i e x p ( E F − E i k T ) p = n i e x p ( E i − E F k T ) \begin{cases} n=n_iexp(\frac{E_F-E_i}{kT}) \\ p=n_iexp(\frac{E_i-E_F}{kT}) \end{cases} {n=niexp(kTEFEi)p=niexp(kTEiEF)

非简并半导体的载流子浓度与温度的关系:

在低温时,晶体中的热能不足以电离所有存在的施主杂质。有些电子被冻结在施主能级中,因此电子浓度小于施主浓度当温度上升时,完全电离的情形即可达到(即 n n = N D n_n =N_D nn=ND)

当温度继续上升时,电子浓度基本上在一段长的温度范围内维持定值,此为非本征区。
然而,当温度进一步上升,达到某一值,此时本征载流子浓度可与施主浓度相比,超过此温度后,半导体将本征化。半导体变成本征时的温度由杂质浓度及禁带宽度值决定。

简并半导体

对非简并半导体掺杂的越来越多,则会得到简并半导体。
简并半导体的定义:对于高掺杂的n型或p型半导体,费米能级 E F E_F EF将高于导带底部 E c E_c Ec或低于价带顶部 E v E_v Ev
简并半导体的特征:禁带宽度变窄效应。
禁带宽度变窄效应的定义:高杂质浓度造成禁带宽度变小

习题

例 一硅晶掺入每立方厘米10^{16}个砷原子,求室温下(300K)的载流子浓度与费米能级。
需要用到的公式包括1.本征载流子浓度公式 2.从导带底算起的本征费米能级 2.从本征费米能级算起的费米能级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值