我撰写的目的是降低半导体物理的理解门槛,所以很多内容在表达上并不规范。我会为了尽可能简单地保留重点而放弃一些严谨性。
本章目录
什么是半导体?为什么要讲器件与物理?
半导体器件和物理应该分为两边看。半导体物理研究的是电子与空穴的运动规律;半导体器件研究的是器件在不同方面的电性能与光性能。
半导体器件与物理研究的目的是用能带裁剪工艺构造势垒结构,从而控制载流子运动
半导体工业的核心是集成电路。集成电路的定义是用平面电路工艺,由有源和无源器件组成,靠电路互联并集成在单晶片上,封装在外壳中的具有特定功能的复杂电路。这概念是不是很复杂?我们把它拆开来看
本质 | 特征 |
---|---|
具有特定功能的复杂电路 | 工艺用平面电路 |
组成由有源和无源器件 | |
互联靠电路 | |
“集成”在单晶片上 | |
封装在外壳中 |
半导体的基本结构
半导体的基本结构有4种,分别是金属-半导体、pn-结、异质结、金属-氧化物-半导体结构。
金属-半导体的关键词是整流效应,典型应用是金半场效应晶体管mesfet.
异质结的特点是两片半导体材料不同。金属氧化物半导体结构也就是MOS结构,典型应用如金氧半场效应晶体管。最典型的例子是cmos,它的特点是仅在逻辑状态转化时才有大电流,故功耗小。
摩尔定律
摩尔定律:每18个月芯片集成度增加一倍。
它的物理基础是器件等比例缩小定理。
器件等比例缩小定理的内涵是mosfet横向纵向尺寸缩小k倍,面积缩小k的平方倍,性能提高k的三次方。
为了实现器件的缩小而提出的技术:有沟槽隔离、化学机械抛光、铜布线。
封测有封装和硅片测试两个方面。
封装的目的是保护芯片,粘贴芯片到更高级的装配板上。
硅片测试测的是电集成电路的电学参数,目的是检验硅片的规格一致性和电学性能是否可以接受。
热平衡时的能带和载流子浓度
半导体有元素,半导体和化学,半导体化学,半导体的优点是具有与元素半导体不同的光电特性,可以供使用,缺点是制备程序更复杂,技术不成熟
晶体结构
半导体材料的结构为单晶结构,其典型的结构分类包括立方、面心立方、体心立方、密排六方、金刚石结构、闪锌矿结构
金刚石结构的形态:由两个同种原子组成的主副面心立方嵌构而成。当主副面心立方的组成员子不一致时,得到闪锌矿结构
半导体材料的结构为单晶结构,将单晶结构的整体结构进行抽象,得到晶格
晶格的定义:晶体中原子的周期性排列
晶格中最小的一部分则是单胞
单胞的定义:周期性排列的最小单元
单胞朝某方向延伸和复制,可以复原晶格
单包所延伸的一组方向(如三维结构中的一组就有三个)则是晶格常数
晶格常数的其中一个叫晶格参数
晶格常数用向量组表示为:
R
→
=
m
a
→
+
n
b
→
+
p
c
→
\overrightarrow{R}=m\overrightarrow{a}+n\overrightarrow{b}+p\overrightarrow{c}
R=ma+nb+pc
晶格常数用密勒指数来描述晶面方向
密勒指数的获取方法:
1.取截距
2.取倒数
3.化简为(hkl)
让我们来辨析一下hkl大家族
m
(hkl)为一个晶面;取(hkl)相反的一组晶面,为(
h
‾
\overline{h}
hkl);可见,h.k.l都可以取一个反方向,这些反方向集合起来就得到“一族等价对称晶面”{hkl}。
如果取垂直于晶面(hkl)的一个晶相,则得到[hkl];同样h.k.l都可以取一个反方向,这些反方向集合起来得到“一族等价晶相”
共价键
金刚石晶格中共用电子形成共价键
共价键是由不同原子共用时产生的。共价键的存在方式,结合电子观通俗地讲,就是在化合物中,公用电子在正离子的原子范围内停留的时间稍长
载流子:低温时,电子分别被束缚于四面体晶格中的相应位置,因此它们无法用于导电。
用能量打断共价键后得到载流子。
载流子的定义:半导体中可移动的电子和空穴
波尔能级模型
接下来,我们将使用玻尔能级模型。什么是波尔能级模型呢?这里举一个的典型例子,那就是氢的波尔能级模型:
E
H
=
−
m
0
q
4
8
ε
0
h
2
n
2
=
−
13.6
n
2
E_H=-\frac{m_0q^4}{8\varepsilon_0 h^2n^2}=-\frac{13.6}{n^2}
EH=−8ε0h2n2m0q4=−n213.6
自由电子质量
m
0
m_0
m0,电荷量q,真空介电常数
ε
0
\varepsilon_0
ε0,
h
=
6.63
⋅
1
0
−
34
J
⋅
s
h=6.63\cdot 10^{-34} J\cdot s
h=6.63⋅10−34J⋅s普朗克常量,n主量子数(取自1,2,3,…)
氢原子可以用表示波尔能级模型,但其他原子并不具备氢这种仅有一个电子的情况。更何况当原子形成了键,那么原子之间就会相互影响,其中就包括影响对方的电子。
m
万物最终都会趋于平衡。当两个原子就像小夫妻一样,经过前期能量剧烈的磨合后,逐渐地趋于安稳。
如有N个原子形成一个固体,不同原子外层电子的轨道重叠且相互作用,这种相互作用包括任意原子间的引力和斥力,将造成能级的移动。当N很大时,将形成连续的能带。视晶体内原子的间距不同,这N个能级形成的能带可延展至几个电子伏特。
此时平衡状态下的原子间距为a,形成了导带
E
c
E_c
Ec和价带
E
v
E_v
Ev。
在绝对零度时,电子占据最低能态,因此在较低能带(即价带)的所有能态将被电子填满,而在较高能带(即导带)的所有能态将没有电子。
禁带宽度
禁带宽度 E g = E c − E v E_g=E_c-E_v Eg=Ec−Ev,顾名思义就是禁止能量的间隔。它表示将半导体价带中的电子断键,变成自由电子并送到导带,而在价带中留下一个空穴所需的能量。
当半导体的价带顶部
E
v
E_v
Ev和导带底部
E
c
E_c
Ec处于同一动量p时,为直接带隙半导体;处于不同的动量p时,则是间接带隙半导体。
直接带隙半导体由于具有易激发的特性,可以应用于发光二极管和激光。
导体、半导体、绝缘体
既然我们学习了波尔能级模型,那么能否使用波尔能级模型去理解半导体呢?
答案是可以的。
电子在最高能带或最高两能带的占有率决定此固体的导电性。金属就是价带与导带重合,或者导带一直有电子的材料;半导体是禁带宽度
E
g
E_g
Eg约为1ev的材料;绝缘体是禁带宽度
E
g
E_g
Eg过大(如超过9ev)的材料。
自由电子的能量
单一自由电子能量:
E
=
p
i
→
p
j
→
2
m
0
=
p
2
2
m
0
E=\frac{\overrightarrow{p_i}\overrightarrow{p_j}}{2m_0}=\frac{p^2}{2m_0}
E=2m0pipj=2m0p2
其中p是动量。p的平方,实际上是矢量的平方,因此如果我们想用自由电子能量E和动量p来描述
m
0
m_0
m0的话,需要对矢量的两个方向分别进行微分才能得到,过程如下:
m
0
=
(
∂
2
E
∂
p
i
∂
p
j
)
−
1
=
(
∂
2
E
∂
p
2
)
−
1
m_0=(\frac{\partial^2E}{\partial p_i \partial p_j})^{-1}=(\frac{\partial^2E}{\partial p^2})^{-1}
m0=(∂pi∂pj∂2E)−1=(∂p2∂2E)−1
将其中的
m
0
m_0
m0自由电子质量换为有效质量
m
n
m_n
mn,可以得到其他原子的能量表达式
E
n
=
p
2
2
m
n
E_n=\frac{p^2}{2m_n}
En=2mnp2
单一的自由电子能量已经知道了,但是当不同的原子进行结合,那么另一个原子会对电子产生作用,这个时候就会产生导带 E c E_c Ec、价带 E v E _v Ev和禁带宽度 E g E_g Eg。其中有一些典型的禁带宽度值需要牢记,比如常温常压下(kT=300)硅Si的禁带宽度 E g = 1.12 e V E_g=1.12eV Eg=1.12eV,砷化镓GaAs的禁带宽度 E g = 1.42 e V E_g=1.42eV Eg=1.42eV
硅和砷化镓的带隙与压力的关系,也可以称为禁带宽度与应力的关系。Si的禁带宽度随压力的上升而下降。GaAs的带隙随压力的下降而上升。
热平衡状态
热平衡状态的定义:在给定温度下(如常温下kT=300K),无任何外来扰动(如光照、压力或电场);持续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴的一种稳定状态。热平衡状态下载流子浓度不变。
显然,热平衡状态的定义有点长,但仍需要牢记这些知识点。因此我们将热平衡状态进行分解,可以得到两个内在本质特性和两个外在表象特征。
两个内在本质特性是:给定温度下的稳定状态;无任何外来扰动如光照压力或电场。
两个外在表象特征是:在给定温度下持续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴;热平衡状态下载流子浓度不变。
导带中电子浓度的表达式
n
=
∫
0
E
t
o
p
n
(
E
)
d
E
=
∫
0
E
t
o
p
N
(
E
)
F
(
E
)
d
E
n=\int_0^{E_{top}} n(E)dE=\int_0^{E_{top}} N(E)F(E)dE
n=∫0Etopn(E)dE=∫0EtopN(E)F(E)dE
单位体积内允许的能态密度
N
C
N_C
NC;
F
(
E
)
F(E)
F(E)一个电子占据能量E范围的几率或者是能量为E的能态被空穴占据的几率,别称是费米分布函数。
费米能级 E F E_F EF的定义:电子占据率为50%的能级能量
用费米能级
E
F
E_F
EF和能量E定量地描述费米分布函数
F
(
E
)
F(E)
F(E):
F
(
E
)
=
1
1
+
e
E
−
E
F
k
T
F(E)=\frac{1}{1+e^{\frac{E-E_F}{kT}}}
F(E)=1+ekTE−EF1
当
E
−
E
F
<
3
k
T
E-E_F<3kT
E−EF<3kT时,
1
1
+
e
E
−
E
F
k
T
≈
e
x
p
(
−
E
−
E
F
k
T
)
\frac{1}{1+e^{\frac{E-E_F}{kT}}}\approx exp(-\frac{E-E_F}{{kT}})
1+ekTE−EF1≈exp(−kTE−EF)
于是可以得到
F
(
E
)
F(E)
F(E)的另一个表达式:
F
(
E
)
≈
e
x
p
(
−
E
−
E
F
k
T
)
F(E)\approx exp(-\frac{E-E_F}{{kT}})
F(E)≈exp(−kTE−EF)
波尔兹曼常数
k
k
k;绝对温度
T
T
T,单位为“以开(K)”
本征半导体
本征半导体的定义:杂质数量远小于热激发产生的电子和空穴的半导体
本征半导体的特点:
1.其费米能级位置近似于禁带中间;
用费米能级和导带中的有效态密度表示的导带电子密度为
n
=
N
c
e
x
p
(
−
E
c
−
E
F
k
T
)
n=N_cexp(-\frac{E_c-E_F}{kT})
n=Ncexp(−kTEc−EF)
用费米能级和价带中的有效态密度表示的价带空穴密度为
p
=
N
v
e
x
p
(
−
E
F
−
E
v
k
T
)
p=N_vexp(-\frac{E_F-E_v}{kT})
p=Nvexp(−kTEF−Ev)
E
F
E_F
EF越接近
E
v
E_v
Ev时,
p
p
p越接近
N
v
N_v
Nv;
n
n
n同理
2.导带中的电子与价带中的空穴浓度相同,表达式为本征钾离子浓度,电子浓度,空穴浓度
已知适用于所有半导体的一条定律——质量作用定律:化学反应的速率与反应物的有效质量(即浓度)成正比,
n
p
=
n
i
2
np=n_i^2
np=ni2。\f
已知导带的电子浓度为:
n
=
N
C
e
x
p
(
−
E
C
−
E
F
k
T
)
n=N_Cexp(-\frac{E_C-E_F}{kT})
n=NCexp(−kTEC−EF),价带中的空穴浓度为:
p
−
N
V
e
x
p
(
−
E
F
−
E
V
k
T
)
p-N_Vexp(-\frac{E_F-E_V}{kT})
p−NVexp(−kTEF−EV)
导带电子浓度和加载电子浓度的表达式代入质量作用定律得到:
n
i
=
N
C
N
V
e
x
p
(
−
E
g
2
k
T
)
n_i=\sqrt{N_CN_V}exp(\frac{-E_g}{2kT})
ni=NCNVexp(2kT−Eg)
3.禁带宽度越大,本征载流子浓度越小
本征半导体相关参数
本征载流子浓度:对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为 n = p = n i n=p=n_i n=p=ni:
本征费米能级的定义:本征半导体的费米能级。
同时一些室温下(300K)重要的常数需要牢记:
普朗克常量 h = 6.63 ⋅ 1 0 − 34 J ⋅ s h=6.63\cdot 10^{-34} J\cdot s h=6.63⋅10−34J⋅s | - |
---|---|
Si | N c = 2.86 × 1 0 19 c m − 3 N_c=2.86\times 10^{19} cm^{-3} Nc=2.86×1019cm−3 |
- | N v = 2.66 × 1 0 19 c m − 3 N_v=2.66\times 10^{19} cm^{-3} Nv=2.66×1019cm−3 |
- | n i = 9.65 × 1 0 9 c m − 3 n_i=9.65\times 10^{9} cm^{-3} ni=9.65×109cm−3 |
GaAs | N c = 4.7 × 1 0 17 c m − 3 N_c=4.7\times 10^{17} cm^{-3} Nc=4.7×1017cm−3 |
- | N v = 7.0 × 1 0 18 c m − 3 N_v=7.0\times 10^{18} cm^{-3} Nv=7.0×1018cm−3 |
- | n i = 2.25 × 1 0 6 c m − 3 n_i=2.25\times 10^{6} cm^{-3} ni=2.25×106cm−3 |
非本征半导体
非本征半导体的定义:掺入了杂质,引入了杂质能级的半导体。
这条定义中有两个重要的量,分别是杂质和杂质能级。
杂质包括施主doner和受主acceptor,施主的浓度为
N
D
N_D
ND;受主的浓度叫
N
A
N_A
NA。
杂志能级和波尔能级模型一样,可以由氢原子的杂质能级 E H = − m 0 q 4 ε 2 h 2 n 2 E_H=-\frac{m_0q^4}{\varepsilon^2 h^2 n^2} EH=−ε2h2n2m0q4推向各种原子。我们使用不同材料的介电常数 ε s \varepsilon_s εs和有效质量 m n m_n mn进行换算,得到的表达式如下: E D = ( ε 0 ε s ) 2 × ( m n m 0 ) 2 × E H E_D=(\frac{\varepsilon_0}{\varepsilon_s})^2\times(\frac{m_n}{m_0})^2\times E_H ED=(εsε0)2×(m0mn)2×EH
非本征半导体的分类包括非简并半导体和简并半导体。
非简并半导体
非简并半导体的定义:电子或空穴的浓度远低于导带或价带中的有效态密度的半导体。
用费米能级 E F E_F EF与能带( E c E_c Ec和 E v E_v Ev)的方式描述非简并半导体的定义,即: E F E_F EF比 E c E_c Ec低3kT,或 E F E_F EF比 E v E_v Ev高3kT还多。
通常对硅及砷化镓中的浅层受主而言,室温下即有足够的热能,供给将所有施主杂质电离所需的能量E,因此可在导带中提供与所有施主杂质等量的电子数,即可移动的电子及不可移动的施主离子二者浓度相同。这种情形称为完全电离。在完全电离的情形下,电子浓度为 n = N D n=N_D n=ND
完全电离
完全电离的定义:室温下就能提供施主或受主杂质足够的电离能 E D E_D ED,即可移动的电子浓度 n = 施主杂质浓度 N D n=施主杂质浓度N_D n=施主杂质浓度ND和可移动的空穴浓度 p = 受主杂质浓度 N A p=受主杂质浓度N_A p=受主杂质浓度NA
掺杂施主杂质时,我们换算
n
=
N
c
e
x
p
(
−
E
c
−
E
F
k
T
)
n=N_cexp(-\frac{E_c-E_F}{kT})
n=Ncexp(−kTEc−EF),得到从导带底部算起的费米能级
E
c
−
E
F
=
k
T
⋅
l
n
(
e
N
c
N
D
)
E_c-E_F=kT\cdot ln(e\frac{N_c}{N_D})
Ec−EF=kT⋅ln(eNDNc);从本征费米能级
E
i
E_i
Ei算起的费米能级:
E
F
−
E
i
=
k
t
⋅
l
n
(
n
n
i
)
E_F-E_i=kt\cdot ln(\frac{n}{n_i})
EF−Ei=kt⋅ln(nin)
掺杂受主杂质时,从价带顶部算起的费米能级:
E
F
−
E
v
=
k
t
⋅
l
n
(
N
v
N
A
)
E_F-E_v=kt\cdot ln(\frac{N_v}{N_A})
EF−Ev=kt⋅ln(NANv)
非简并半导体的载流子浓度
上一节我们知道了可以用费米能级计算载流子浓度,如 n = N c e x p ( − E c − E F k T ) n=N_cexp(-\frac{E_c-E_F}{kT}) n=Ncexp(−kTEc−EF)。
那如何用本征费米能级来计算载流子浓度呢?
这里直接给出公式,推导过程就省略了:
{
n
=
n
i
e
x
p
(
E
F
−
E
i
k
T
)
p
=
n
i
e
x
p
(
E
i
−
E
F
k
T
)
\begin{cases} n=n_iexp(\frac{E_F-E_i}{kT}) \\ p=n_iexp(\frac{E_i-E_F}{kT}) \end{cases}
{n=niexp(kTEF−Ei)p=niexp(kTEi−EF)
非简并半导体的载流子浓度与温度的关系:
在低温时,晶体中的热能不足以电离所有存在的施主杂质。有些电子被冻结在施主能级中,因此电子浓度小于施主浓度当温度上升时,完全电离的情形即可达到(即 n n = N D n_n =N_D nn=ND)
当温度继续上升时,电子浓度基本上在一段长的温度范围内维持定值,此为非本征区。
然而,当温度进一步上升,达到某一值,此时本征载流子浓度可与施主浓度相比,超过此温度后,半导体将本征化。半导体变成本征时的温度由杂质浓度及禁带宽度值决定。
简并半导体
对非简并半导体掺杂的越来越多,则会得到简并半导体。
简并半导体的定义:对于高掺杂的n型或p型半导体,费米能级
E
F
E_F
EF将高于导带底部
E
c
E_c
Ec或低于价带顶部
E
v
E_v
Ev
简并半导体的特征:禁带宽度变窄效应。
禁带宽度变窄效应的定义:高杂质浓度造成禁带宽度变小
习题
例 一硅晶掺入每立方厘米10^{16}个砷原子,求室温下(300K)的载流子浓度与费米能级。
需要用到的公式包括1.本征载流子浓度公式 2.从导带底算起的本征费米能级 2.从本征费米能级算起的费米能级