【四足机器人那些事】足端轨迹规划(一)

来源:

作者:古月居

 

【复合摆线轨迹】

在四足机器人的研究中,有一个很关键的问题,就是如何减少足端在触地瞬间的冲击,避免把机器人把自己给蹬倒了?这时候就需要一个合理的足端轨迹规划。本篇将会介绍几种足端轨迹。

本文将对四足机器人的足端轨迹进行规划。将数学中的复合摆线和多项式曲线引入到足端轨迹的规划中,根据零冲击原则[2],规划出 3 条满足要求的足端轨迹,包括:

  • 复合摆线轨迹

  • 八次多项式轨迹

  • 分段五次多项式轨迹

本篇先介绍第一个
该轨迹是摆线方程的延伸,我们先来看什么是摆线。

 

-1摆线-

摆线,又称旋轮线、圆滚线,在数学中,摆线(Cycloid)被定义为,一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹。它是一般旋轮线的一种。

看以下动图就知道摆线是如何来的:

红色线即为摆线轨迹,总结成数学公式为:

-2足端轨迹约束方程-

为达到理想的步态,足端轨迹规划需要满足:

① 行进平稳、协调,无明显的上下波动、左右摇晃和前后冲击;

② 各关节没有较大冲击,特别是摆动相抬腿和落地瞬间实现零冲击抬腿和落地软
着陆;

③ 摆动腿跨步迅速,足端轨迹圆滑,关节速度和加速度平滑连续无畸点;

④ 避免足端与地面接触时产生滑动,无摆动腿拖地现象。

规定在图片 ,足端处于摆动相,在图片 ,足端处于支撑相。设水平方向为 X 方向,竖直方向为 Y 方向,根据四足机器人足端运动位置的要求,可确定足端轨迹在水平方向(X 方向)和竖直方向(Y 方向)的位移方程有以下约束。

2.1 水平X方向

位置约束

图片

速度约束

图片

加速度约束

图片

2.2 竖直Y方向

位置约束

图片

速度约束

图片

加速度约束

图片

-3复合摆线轨迹-

3.1 摆动相轨迹设计

基于第二节中提到的原则,文献[1]中提出了一种基于复合摆线形式的轨迹规划方法,并在文献[2]中得到了验证和使用。针对机器人足底与地面接触时会产生滑动和行走过程中拖地问题,文献[2]对复合摆线规划方法提出了修改,修改后的摆动腿的步态规划轨迹定义为:

图片

其中S为步幅, H为抬腿高度,图片为摆动相周期。现在我们来看提下它的图像,设定S = 100, H = 30, 周期T=2。

我们用python绘制该轨迹的图像如下:

为了更好地研究该轨迹的特性,我们接下来依次看x,y关于时间的位置,速度,加速度。

3.2 轨迹改进

从表达式上分析,该轨迹的加速度方程是余弦函数的倍数,在 t=0 和 t=Tm时刻会出现加速度跳变,根据图片,这就导致了抬腿的瞬间要求产生较大的接触力。

从加速度图像亦能说明这一点。针对这一问题,文献[5]对 y 方向的位移方程提出了以下修改。

由于摆动腿在 y 轴运动需要先抬腿再落腿,借鉴 x 轴正弦方式运动的方法求解 y 轴位移曲线

先从加速度函数入手,我们设计成如下形式:

图片

对上式进行积分求得速度函数:

图片

然后根据速度约束图片以及图片,求出图片

图片

对速度函数进行积分,求得位移函数为:

图片

而根据轨迹约束图片图片 我们无法求解出参数A和图片,因此通过分段函数的方法求y轴方向的曲线方程:

图片

为了确定n的取值,我们来看看n取不同值时的速度图像取T=2,H=1,S= 1,T=2。

可以看出,当n越大时,y方向上的速度变化就越频繁,这可能会导致系统能耗的增加。

再来看位移图像:

从位移图像来看,只有当n取4时,轨迹才是平滑的。因此我们可以确定轨迹的最终形式为:

图片

其中

图片

图片

我们取H=30, S=100, T=2来验证上式:

这里我们发现速度图像与确定n值时给出的不一致,那是因为我们在y的轨迹方程中使用了分段函数,对图片部分进行了取反,因此该部分的速度和加速度图像是沿横轴进行了翻转的。

3.3 支撑相足端轨迹

相比于摆动相的足端轨迹,支撑相的设计就显得稍微简单。首先我们要知道两点:

a、支撑相水平方向上的位移曲线与摆动相的关于t=图片对称。

b、竖直方向的位移适终为0

基于这两点,我们可以设计出如下曲线:

图片

3.4 周期轨迹

定义步态周期为T,支撑相,摆动相周期均为图片,则图片

关于周期:摆动相图片,支撑相图片的持续时间不一定要设为一致,可根据控制器模型实时动态调节。这种情况下T = 图片

我们对时间进行周期化处理:

图片

其中,图片为系统时间,图片为第i条腿的轨迹规划时间,以LF腿的相位为初始值,则图片为各腿相位落后于LF腿的时间与步态周期的比值。

--总结--

通过对轨迹方程的改进及其图像的分析,我们最终得到了一个平滑,且冲击较小的复合摆线轨迹,尽管这里给出完整的周期轨迹,但是解决方案如果是结合MIT控制器的话,可以不考虑支撑相,即周期控制部分,仅考虑摆动相轨迹。

【参考文献】

[1] SAKAKIBARA Y,KAN K,HOSODA Y,et al. Foot trajectory for a quadruped walking machine[C] // Proceedings IROS ‘90. IEEE International Workshop on,July 3-6,1990,Ibaraki,Japan. New York,NY,USA:IEEE,1990:315-322.

[2] 何冬青,马培荪. 四足机器人动态步行仿真及步行稳定性分析[J]. 计算机仿真,2005(2):146-149. HE Dongqing , MA Peisun. Simulation of dynamic walking of quadruped robot and analysis of walking stability[J]. Computer Simulation,2005(2):146-149.

[3] 李贻斌,李彬,荣学文,等. 液压驱动四足仿生机器人的结构设计和步态规划[J]. 山东大学学报,2011(5):32-36,45. LI Yibin,LI Bin,RONG Xuewen,et al. Mechanical design and gait planning of a hydraulically actuated quadruped bionic robot[J]. Journal of Shandong University,2011(5):32-36,45.

 

<完>

足端轨迹规划中的复合摆线轨迹是一种根据数学中的复合摆线和多项式曲进行规划的足端轨迹。通过将复合摆线和多项式曲线引入足端轨迹规划中,根据零冲击原则,可以规划出满足要求的足端轨迹。 具体而言,复合摆线轨迹是一种利用复合摆线函数来描述足端的运动轨迹。复合摆线函数是一种特殊的曲线函数,它具有周期性和光滑性。通过调整复合摆线函数的参数,可以得到不同形状和特性的足端轨迹。 复合摆线轨迹在足端轨迹规划中的应用有很多优势。首先,复合摆线函数可以很好地描述足端的运动特性,使得机器人可以实现平稳、连续的运动。其次,复合摆线函数具有周期性,可以使得机器人足端轨迹有规律地重复出现,便于控制和规划。 在实际应用中,复合摆线轨迹可以用于四足机器人足端运动规划。通过联合使用MATLAB和ADAMS进行仿真,可以实现复合摆线轨迹的规划和控制。同时,利用D-H坐标分析法和欧拉-拉格朗日法,可以对四足机器人的运动学和动力学进行分析和计算。这些方法可以帮助我们理解足端位姿与关节旋转变量的关系,以及关节力矩和运动参数之间的关系。 总结来说,复合摆线轨迹是一种用于足端轨迹规划的方法,通过数学函数的描述和仿真工具的支持,可以实现平稳、连续的足端运动。在四足机器人的应用中,复合摆线轨迹可以与运动学和动力学分析相结合,实现足端轨迹的规划和控制。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【关于四足机器人那些足端轨迹规划-复合摆线轨迹](https://download.csdn.net/download/weixin_38677255/14031613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [四足行为运动学](https://blog.csdn.net/qq_37443333/article/details/88094897)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值