《FlowNet3D》(CVPR2019)--直接从点云中估计场景流

FlowNet3D是CVPR2019的一篇论文,提出了一种直接从点云中估计场景流的端到端网络。它包括点特征学习、点混合和流细化三个模块,利用set conv和set upconv层处理点云数据。论文在FlyingThings3D和KITTI数据集上进行了测试,评估了端点误差和流量估计精度。
摘要由CSDN通过智能技术生成

暴走兔学习了CVPR 2019的论文:《FlowNet3D: Learning Scene Flow in 3D Point Clouds》,为了更好的理解该论文(年纪大了容易忘),在此做个总结性的阅读笔记,争取言简意赅、简单粗暴地描述出论文作者们所作的工作,如果能对相关研究方向的小伙伴有借鉴意义,那就更好了。不喜勿喷,直接移步就好了~


项目地址:https://github.com/xingyul/flownet3d

一句话介绍:

FlowNet3D----是一种点云的端到端的场景流估计网络,能够直接从点云中估计场景流。

  输入:连续两帧的原始点云;

  输出:第一帧中所有点所对应的密集的场景流。

  如图所示:

  flownet3d网络为第一帧中的每个点估计一个平移流向量,以表示它在两帧之间的运动。

FlowNet3D架构

如图所示&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值