暴走兔学习了CVPR 2019的论文:《FlowNet3D: Learning Scene Flow in 3D Point Clouds》,为了更好的理解该论文(年纪大了容易忘),在此做个总结性的阅读笔记,争取言简意赅、简单粗暴地描述出论文作者们所作的工作,如果能对相关研究方向的小伙伴有借鉴意义,那就更好了。不喜勿喷,直接移步就好了~
项目地址:https://github.com/xingyul/flownet3d
一句话介绍:
FlowNet3D----是一种点云的端到端的场景流估计网络,能够直接从点云中估计场景流。
输入:连续两帧的原始点云;
输出:第一帧中所有点所对应的密集的场景流。
如图所示:
flownet3d网络为第一帧中的每个点估计一个平移流向量,以表示它在两帧之间的运动。
FlowNet3D架构
如图所示&