文章目录
一、GPT 大模型应用开发类型
GPT 大模型应用开发 类型 ☆☆☆ :
- 原生 API : 使用 OpenAI 提供的 基础接口 ( 如 : ChatCompletion ) , 开发者直接调用 GPT 模型完成 文本生成 、 对话交互 等任务 , 这种开发方式灵活性高 , 开发者需 自行 管理上下文 、设计 Prompt 提示词 和 解析返回结果 ;
- GPTs : 这是 OpenAI 推出的 零代码 / 低代码 开发工具 , 用户 通过 图形化界面 ( GPT Builder ) 配置专属 AI 助手 , 无需编程 即可 集成 知识库、外部工具 ( 如联网搜索、DALL·E 绘图 ) 和 自定义指令 ;
- Assistants API : 是 面向开发者 的 高阶开发框架 , 提供 预构建的 对话管理、持久化线程 ( Threads ) 和 多工具调度能力 ( 如代码解释器、文件检索 ) , 适合构建 复杂的 多轮交互应用 ;
1、原生 API
核心功能
原生 API 功能 : 使用 OpenAI 提供的 基础大语言模型 调用接口 , 开发者通过代码直接发送请求 , 需 自行管理上下文、设计提示词 ( Prompt ) 及 解析响应结果 ;
- 灵活控制 : 支持 自由调整模型参数 ( 如 temperature、max_tokens ) 以优化输出质量 ;
- 上下文管理 : 需 手动维护多轮对话的上下文 , 如 : 通过 messages 数组传递历史记录 ;
- 多模态扩展 : 结合 外部代码 可实现 图像生成、数据检索 等复杂功能 , 但需 额外 开发集成 逻辑 ;
适用场景
原生 API 适用场景 :
- 基础文本生成 : 支持任意 文本内容创作 , 包括故事、诗歌、新闻稿等 ;
- 代码生成与调试 : 生成代码片段、解释编程问题、提供优化建议 ;
- 多语言处理 : 实现 高质量翻译、语法校对、多语言内容生成 ;
- 结构化输出 : 通过 system prompt 控制 JSON/XML 等格式化输出 ;
- 深度定制模型 : 支持 fine-tuning 实现 领域专用模型优化 , 极致调优 , 追求性价比 ;
- 深度定制化应用 : 如企业级聊天机器人、自动化代码生成工具 , 需 高度控制交互流程 与 业务逻辑 ;
- 复杂任务编排 : 需 与其他系统 ( 如数据库、第三方 API ) 深度整合的场景 , 例如金融数据分析平台 ;
- 技术验证与原型开发 : 开发者 快速测试模型能力 或 构建最小可行性产品 ( MVP ) ;
- 知识库构建 : 使用 原生 API + 本地部署 RAG 的 技术方案 实现 ;
国内大模型平替
支持 原生 API 的 国内大模型 : 所有的 国产大模型 都支持 原生 API 的功能 , 大部分 支持 使用 OpenAI 的 API 调用访问 ;
- 阿里云 通义千问
- 百度 文心大模型
- 腾讯 混元大模型
- 讯飞 星火大模型
- 深度求索 DeepSeek-V3
2、GPTs
核心功能
GPTs 功能 : 这是 OpenAI 推出的 零代码 / 低代码 开发工具 , 用户通过 图形化界面 ( GPT Builder ) 配置专属 AI 助手 ;
- 快速搭建 : 无需编程 , 通过 自然语言 指令 定义角色、上传知识库文件 ( 如 PDF、CSV ) , 3 分钟即可创建可分享的AI应用 ;
- 多模态交互 : 内置工具链 集成 网络搜索、DALL·E 图像生成、代码解释器 等工具 , 支持第三方 API 扩展 ( Actions ) ;
- 共享与分发 : 生成 私有链接 或 发布至 GPT Store , 便于团队协作或商业变现 ;
- 知识库增强 : 上传文档 实现 基于文件 的问答 ( 支持 PDF / TXT 等 ) ;
- 动作扩展 : 通过 Actions 连接第三方 API ( 如天气查询 ) ;
适用场景
GPTs 适用场景 :
- 个人生产力工具 : 教育辅导助手 ( 数学解题、语言学习 ) 、创意设计 ( LOGO 生成、情绪版制作 ) ;
- 企业知识管理 : 上传 内部文档 构建 问答系统 , 供员工快速检索信息 ;
- 轻量级应用原型 : 市场调研、客户反馈分析 等 快速迭代需求 , 适合非技术团队独立完成 ;
国内大模型平替
支持 类似 GPTs 自定义功能 的 国内大模型 : 部分国内 大模型 平台 支持 通过 低代码 / 零代码 配置专属 AI 助手 ;
- 阿里云通义千问 Max : 支持 上传 知识库文件 ( PDF/CSV ) , 自定义指令与角色设定 , 集成 联网搜索 与 DALL·E 绘图 ;
- 字节跳动豆包模型 : 通过 Coze 平台配置 Bot , 支持 函数调用 ( Function Call ) 与 第三方 API 集成 ;
- 智谱 AI GLM 系列 : 支持 微调 与 私有化部署 , 适配垂直领域需求 ;
3、Assistants API
核心功能
Assistants API 功能 : 是 面向 复杂交互场景 的 高阶开发框架 ;
- 自动化上下文管理 : 通过 Threads 对象 持久化 对话状态 , 无需手动拼接历史记录 ;
- 工具链集成 : 内置 代码解释器 ( Code Interpreter ) 、文件检索 ( File Search ) 等工具 , 支持自定义 函数调用 ( Function Calling ) ;
- 企业级扩展 : 支持 多模态输入 ( 文件上传、图像解析 ) 与 安全策略 ( 数据加密、权限控制 ) ;
- 自动化工作流 : 多步骤任务自动执行 , 如 : 数据分析 -> 报告生成 一站式生成 ;
- 持久化对话管理 : 自动维护 无限长对话历史 ;
- 文件处理 : 支持 上传大量的 Excel / CSV 进行 数据可视化分析 ;
- 定制界面 : 可以 自定义大模型的交互界面 ;
- 产品集成 : 可以 与自己的 产品集成 ;
适用场景
Assistants API 适用场景 :
- 智能客服系统 : 处理 多轮对话、工单跟进 , 自动调用 知识库 解答复杂问题 ;
- 数据分析平台 : 结合 代码解释器 执行 SQL 查询、生成可视化报表 , 降低非技术用户使用门槛 ;
- 跨部门协作工具 : 如 项目管理助手 , 集成 Jira、Slack 等第三方服务 , 自动化任务分配与进度追踪 ;
国内大模型平替
支持 类似 Assistants API 高级接口功能 的 国内大模型 : 这类 大模型 面向复杂交互场景的高阶框架 , 支持 自动化上下文管理 与 多工具调度 ;
- 百度千帆平台 : 提供 ERNIE-Bot SDK , 支持 持久化会话管理 ( Threads ) 、内置 代码解释器 与 文件检索工具 ;
- 华为云盘古大模型 : 科学计算 API 支持 多模态输入 ( 如气象数据 ) , 自动处理任务队列与结果返回 ;
- 深度求索 DeepSeek-V3 : MoE 架构 动态调度专家模型 , 支持 多轮对话状态管理 与 高并发请求 ;
二、GPT 大模型 技术选型
1、保密性角度考虑
在线大模型 与 本地部署大模型 :
- 在线大模型 : 功能强大 , 但是 数据需上传至云端 , 存在潜在泄露风险 , 适合非敏感场景 ;
- 本地部署大模型 : 数据全程私有化 , 适合金融、医疗等高保密需求领域 ; 如 : DeepSeek-R1 的开源方案被推荐用于企业本地部署 ;
国产大模型 与 国外大模型 :
- 国产大模型 : 国内政策强调 数据主权 和 隐私保护 , 国产大模型 ( 如阿里通义千问、百度文心一言 ) 通常支持 本地化部署 , 数据存储 和 处理 均在境内 , 符合《数据安全法》和行业合规要求 ; 开源模型 ( 如 DeepSeek ) 虽支持本地部署 , 但需企业自行构建安全防护体系 , 对技术能力要求较高 ;
- 国外大模型 如 : GPT-4、Claude 等模型 , 其 数据处理 可能涉及 将数据传输到 境外服务器 中 , 存在数据跨境传输风险 , 尤其对 涉及国家安全 或 商业秘密 的行业不友好 , 正式的商业项目 或者 涉及 国央企的项目 , 都不允许使用国外大模型 ;
2、开发与使用成本角度考虑
在线模型 :
- Token 费用 : 国外大模型 费用较高 , 国内的 DeepSeek 的在线模型 Token 费用 仅为 OpenAI 的 1/70 ;
- 持续付费 : 在线模型 初期 成本低 , 但是 运行过程内 , 需要持续付费 , 根据 Token 数量按需付费 ;
本地模型 :
- 本地部署开源模型 : 基本都是 部署 DeepSeek-R1 671B 满血版本 或者 部署 DeepSeek-R1 的 蒸馏版本 , 在普通 PC 机部署 DeepSeek-R1 14B 蒸馏版本 即可实现不错的效果 ;
- 不同的数据分开处理 : 敏感保密数据 使用该 本地大模型实现 , 非敏感信息 使用 DeepSeek 在线 API 接口功能实现 ;
- 一次性付费 : 本地部署 , 需要 一次性投入算力硬件和运维资源 , 但长期成本可控 , 尤其适合高并发场景 , 如 : 部署 DeepSeek-R1 671B 满血版本大模型 需要 16 张 A100 显卡 ;
三、OpenAI 支持 Assistant API 模型工具
1、Assistant API 支持模型
基础模型 :
- GPT-4 系列 : 成本高 ;
- gpt-4 : 通用 多模态模型 , 支持文本交互和文件分析 , 可扩展 文件检索 工具 ;
- gpt-4-turbo : 增强版 GPT-4 , 支持更长上下文和更高效率 , 可扩展 代码解释器 + 文件检索 工具 ;
- gpt-4-vision-preview : 支持 图像理解 和 多模态输入 ( 需结合工具使用 ) ;
- GPT-3.5 系列 : 成本低 ;
- gpt-3.5-turbo : 轻量级模型 , 适用于 简单对话场景 , 成本很低 , 无法扩展其它工具 ;
2、Assistant API 扩展工具
OpenAI 的 Assistant API 目前支持以下三类核心工具 :
- 代码解释器 Code Interpreter : 在 沙盒环境 中 执行 Python 代码 , 支持 数据分析 、 图表生成 及 文件处理 , 支持上传文件作为输入 , 生成图像或处理后文件作为输出 ;
- 应用场景 : 动态生成数据可视化图表 , 数学计算或复杂逻辑问题求解 ;
- 文件检索 Retrieval : 通过 外挂知识库 ( 如 PDF、TXT ) 扩展助手知识 , 增强回答准确性 , 支持 PDF、Word、Excel、PPT 文件格式 ;
- 应用场景 : 解析 用户上传的 合同、论文 等文档 并 提取关键信息 , 结合企业私有数据提供定制化回答 ;
- 函数调用 Function Calling : 允许助手 调用 开发者 自定义函数 , 整合 外部系统 或 API 数据 ; 开发者 先 预定义函数 , 然后 助手根据 用户请求 自动 匹配 并 调用 函数 ;
- 应用场景 : 查询 实时天气、股票行情等动态数据 , 与数据库交互完成订单查询等操作 ;
扩展工具组合代码示例 :
tools = [
{"type": "code_interpreter"}, # 启用代码解释器
{"type": "retrieval"}, # 启用文件检索
{"type": "function", "function": custom_function} # 自定义函数
]