傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

参考链接:
DR_CAN老师的原视频

0、复习Part1的内容

参考链接:傅里叶级数与傅里叶变换_Part1_三角函数系的正交性
三角函数系

{ sin ⁡ 0 x = 0 , cos ⁡ 0 x = 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , ⋯   , sin ⁡ n x , cos ⁡ n x , ⋯   , ⋯ } \left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\} {sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,,}

任意两个不同的项,都是正交的。
即 :
{ ∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 ( 1 ) ∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m ( 2 ) ∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = 0 , n ≠ m ( 3 ) \left\{ \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0{\rm{ }}\left( {\rm{1}} \right)\\\\ \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{2}} \right)\\\\ \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{3}} \right) \end{array} \right. ππsinnxcosmxdx=0(1)ππcosnxcosmxdx=0,n=m(2)ππsinnxsinmxdx=0,n=m(3)

另外,当 n = m n = m n=m时,上述三式的计算结果也是后续推导中需要用到的重要结论。

∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π sin ⁡ n x ⋅ cos ⁡ n x d x = ∫ − π π 1 2 sin ⁡ 2 n x d x = 1 2 ( − 1 2 n cos ⁡ 2 n x ) ∣ − π π = 0 \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {\sin nx \cdot \cos nx} dx = \int_{ - \pi }^\pi {\frac{1}{2}\sin 2nx} dx = \frac{1}{2}\left( { - \frac{1}{{2n}}\cos 2nx} \right)\left| {_{ - \pi }^\pi } \right. = 0 ππsinnxcosmxdx=ππsinnxcosnxdx=ππ21sin2nxdx=21(2n1cos2nx) ππ=0

∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π ( cos ⁡ n x ) 2 d x = ∫ − π π 1 2 ( 1 + cos ⁡ 2 n x ) d x = 1 2 x ∣ − π π + 1 2 ⋅ ( 1 2 n sin ⁡ 2 n x ) ∣ − π π = π + 0 = π \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {{{\left( {\cos nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 + \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. + \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi + 0 = \pi ππcosnxcosmxdx=ππ(cosnx)2dx=ππ21(1+cos2nx)dx=21x ππ+21(2n1sin2nx) ππ=π+0=π

∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = ∫ − π π ( sin ⁡ n x ) 2 d x = ∫ − π π 1 2 ( 1 − cos ⁡ 2 n x ) d x = 1 2 x ∣ − π π − 1 2 ⋅ ( 1 2 n sin ⁡ 2 n x ) ∣ − π π = π − 0 = π \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = \int_{ - \pi }^\pi {{{\left( {\sin nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 - \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. - \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi - 0 = \pi ππsinnxsinmxdx=ππ(sinnx)2dx=ππ21(1cos2nx)dx=21x ππ21(2n1sin2nx) ππ=π0=π

注:当 n = m n = m n=m时, sin ⁡ n x \sin nx sinnx cos ⁡ n x \cos nx cosnx本质上是两个不同的项,因此 ∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0 ππsinnxcosmxdx=0它们是正交的。

1、周期函数的傅里叶展开

下面来考虑一个周期函数周期为 T = 2 π T = 2\pi T=2π,即 f ( x ) = f ( x + 2 π ) f\left( x \right) = f\left( {x + 2\pi } \right) f(x)=f(x+2π) ,如下图所示
在这里插入图片描述
像这样的函数,我们可以把它展开为三角级数,就是一系列三角函数的加和。如下所示:

f ( x ) = ∑ n = 0 ∞ a n cos ⁡ n x + ∑ n = 0 ∞ b n sin ⁡ n x f\left( x \right) = \sum\limits_{n = 0}^\infty {{a_n}\cos nx} + \sum\limits_{n = 0}^\infty {{b_n}\sin nx} f(x)=n=0ancosnx+n=0bnsinnx

在某些教科书上面写的傅里叶展开是 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) =\pmb{ \frac{{{a_0}}}{2}} + \sum\limits_{\pmb{n = 1}}^\infty {\left( {{a_n}\cos nx + {b_n}\sin nx} \right)} f(x)=2a0+n=1(ancosnx+bnsinnx)

f ( x ) = ∑ n = 0 ∞ a n cos ⁡ n x + ∑ n = 0 ∞ b n sin ⁡ n x = a 0 cos ⁡ 0 x + b 0 sin ⁡ 0 x + ∑ n = 1 ∞ a n cos ⁡ n x + ∑ n = 1 ∞ b n sin ⁡ n x f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) \begin{array}{l} f\left( x \right) = \sum\limits_{n = 0}^\infty {{a_n}\cos nx} + \sum\limits_{n = 0}^\infty {{b_n}\sin nx} \\ = {a_0}\cos 0x + {b_0}\sin 0x + \sum\limits_{n = 1}^\infty {{a_n}\cos nx} + \sum\limits_{n = 1}^\infty {{b_n}\sin nx} \\ f\left( x \right) =\pmb{a_0} + \sum\limits_{\pmb{n = 1}}^\infty {\left( {{a_n}\cos nx + {b_n}\sin nx} \right)} \end{array} f(x)=n=0ancosnx+n=0bnsinnx=a0cos0x+b0sin0x+n=1ancosnx+n=1bnsinnxf(x)=a0+n=1(ancosnx+bnsinnx)

为什么 a 0 a_0 a0 被写成了 a 0 2 \frac{{{a_0}}}{2} 2a0呢,请继续往下看

Ⅰ、求 a 0 {a_0} a0

等式的左右两边同时求 − π -\pi π π \pi π的积分, ∫ − π π d x \int_{ - \pi }^\pi {dx} ππdx
∫ − π π f ( x ) d x = ∫ − π π a 0 d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) d x = ∫ − π π a 0 d x + ∑ n = 1 ∞ ( a n ∫ − π π cos ⁡ 0 x ⋅ cos ⁡ n x d x + b n ∫ − π π cos ⁡ 0 x ⋅ sin ⁡ n x d x ) \begin{array}{l} \int_{ - \pi }^\pi {f\left( x \right)dx} = \int_{ - \pi }^\pi {{a_0}dx} + \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx + {b_n}\sin nx} \right)} dx} \\ = \int_{ - \pi }^\pi {{a_0}dx} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\int_{ - \pi }^\pi {\cos 0x \cdot \cos nxdx} + {b_n}\int_{ - \pi }^\pi {\cos 0x \cdot \sin nxdx} } \right)} \end{array} ππf(x)dx=ππa0dx+ππn=1(ancosnx+bnsinnx)dx=ππa0dx+n=1(anππcos0xcosnxdx+bnππcos0xsinnxdx)

∵ 三角函数的正交性可得 ∫ − π π cos ⁡ 0 x ⋅ cos ⁡ n x d x = ∫ − π π cos ⁡ 0 x ⋅ sin ⁡ n x d x = 0 \int_{ - \pi }^\pi {\cos 0x \cdot \cos nxdx} = \int_{ - \pi }^\pi {\cos 0x \cdot \sin nxdx} = 0 ππcos0xcosnxdx=ππcos0xsinnxdx=0 ,其中, n = 1 , 2 , 3 , ⋯   , ∞ ≠ 0 n = 1,2,3, \cdots ,\infty \ne 0 n=1,2,3,,=0

∫ − π π f ( x ) d x = ∫ − π π a 0 d x + ∑ n = 1 ∞ ( a n ∫ − π π cos ⁡ 0 x ⋅ cos ⁡ n x d x + b n ∫ − π π cos ⁡ 0 x ⋅ sin ⁡ n x d x ) = 2 π a 0 + ∑ n = 1 ∞ ( a n ⋅ 0 + b n ⋅ 0 ) = 2 π a 0 \begin{aligned} \int_{ - \pi }^\pi {f\left( x \right)dx} &= \int_{ - \pi }^\pi {{a_0}dx} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\int_{ - \pi }^\pi {\cos 0x \cdot \cos nxdx} + {b_n}\int_{ - \pi }^\pi {\cos 0x \cdot \sin nxdx} } \right)} \\ & = 2\pi {a_0} + \sum\limits_{n = 1}^\infty {\left( {{a_n} \cdot 0 + {b_n} \cdot 0} \right)} = 2\pi {a_0} \end{aligned} ππf(x)dx=ππa0dx+n=1(anππcos0xcosnxdx+bnππcos0xsinnxdx)=2πa0+n=1(an0+bn0)=2πa0

⇒ a 0 = 1 2 π ∫ − π π f ( x ) d x ⇒ a 0 ′ = 1 π ∫ − π π f ( x ) d x a 0 = a ′ 0 2 \Rightarrow {a_0} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {f\left( x \right)dx} \Rightarrow {a'_0} = \pmb{\frac{1}{\pi }}\int_{ - \pi }^\pi {f\left( x \right)dx} {a_0} = \frac{{{{a'}_0}}}{2} a0=2π1ππf(x)dxa0=π1ππf(x)dxa0=2a0

即:
f ( x ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = a ′ 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f\left( x \right) = {a_0} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx + {b_n}\sin nx} \right)} = \frac{{{{a'}_0}}}{2} + \sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx + {b_n}\sin nx} \right)} f(x)=a0+n=1(ancosnx+bnsinnx)=2a0+n=1(ancosnx+bnsinnx)

Ⅱ、求 a n {a_n} an

首先等式的两边同时乘以 cos ⁡ m x \cos mx cosmx,然后等式的左右两边同时 − π -\pi π π \pi π的积分, ∫ − π π d x \int_{ - \pi }^\pi {dx} ππdx

∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π a 0 2 cos ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x cos ⁡ m x ) d x \int_{ - \pi }^\pi {f\left( x \right)\cos mxdx} = \int_{ - \pi }^\pi {\frac{{{a_0}}}{2}\cos mxdx} + \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx\cos mx} \right)} dx} + \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{b_n}\sin nx\cos mx} \right)} dx} ππf(x)cosmxdx=ππ2a0cosmxdx+ππn=1(ancosnxcosmx)dx+ππn=1(bnsinnxcosmx)dx

∵ 三角函数的正交性可得

第一项: ∫ − π π a 0 2 cos ⁡ m x d x = a 0 2 ∫ − π π cos ⁡ 0 x cos ⁡ m x d x = 0 \int_{ - \pi }^\pi {\frac{{{a_0}}}{2}\cos mxdx} = \frac{{{a_0}}}{2}\int_{ - \pi }^\pi {\cos 0x\cos mxdx} = 0 ππ2a0cosmxdx=2a0ππcos0xcosmxdx=0

第三项: ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x cos ⁡ m x ) d x = ∑ n = 1 ∞ b n ∫ − π π sin ⁡ n x cos ⁡ m x d x = ∑ n = 1 ∞ b n ⋅ 0 = 0 \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{b_n}\sin nx\cos mx} \right)} dx} = \sum\limits_{n = 1}^\infty {{b_n}\int_{ - \pi }^\pi {\sin nx\cos mxdx} = } \sum\limits_{n = 1}^\infty {{b_n} \cdot 0 = } 0 ππn=1(bnsinnxcosmx)dx=n=1bnππsinnxcosmxdx=n=1bn0=0

∴等式的右边就只剩下第二项了

∫ − π π f ( x ) cos ⁡ m x d x = ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x cos ⁡ m x ) d x \int_{ - \pi }^\pi {f\left( x \right)\cos mxdx} = \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx\cos mx} \right)} dx} ππf(x)cosmxdx=ππn=1(ancosnxcosmx)dx

根据三角函数的正交性,当 n ≠ m n \ne m n=m时, a n ∫ − π π cos ⁡ n x cos ⁡ m x d x = 0 {a_n}\int_{ - \pi }^\pi {\cos nx\cos mxdx} = 0 anππcosnxcosmxdx=0

∴ 等式右边,就剩下当 n = m n = m n=m时的那一项,即

∫ − π π f ( x ) cos ⁡ n x d x = ∫ − π π ( a n cos ⁡ n x cos ⁡ n x ) d x = a n ∫ − π π cos ⁡ n x cos ⁡ n x d x = a n ⋅ π \int_{ - \pi }^\pi {f\left( x \right)\cos nxdx} = \int_{ - \pi }^\pi {\left( {{a_n}\cos nx\cos nx} \right)dx} = {a_n}\int_{ - \pi }^\pi {\cos nx\cos nxdx} = {a_n} \cdot \pi ππf(x)cosnxdx=ππ(ancosnxcosnx)dx=anππcosnxcosnxdx=anπ

⇒ a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x \Rightarrow {a_n} = \pmb{\frac{1}{\pi }}\int_{ - \pi }^\pi {f\left( x \right)\cos nxdx} an=π1ππf(x)cosnxdx, 你看 a n a_n an的系数都是 1 π \pmb{\frac{1}{\pi }} π1,所以把 a 0 = 1 π ∫ − π π f ( x ) d x {a_0} = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( x \right)dx} a0=π1ππf(x)dx ,原式中 a 0 {a_0} a0替换成 a 0 2 \frac{{{a_0}}}{2} 2a0

Ⅲ、求 b n {b_n} bn

首先等式的两边同时乘以 sin ⁡ m x \sin mx sinmx,然后等式的左右两边同时 − π -\pi π π \pi π的积分, ∫ − π π d x \int_{ - \pi }^\pi {dx} ππdx

∫ − π π f ( x ) sin ⁡ m x d x = ∫ − π π a 0 2 sin ⁡ m x d x + ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x sin ⁡ m x ) d x + ∫ − π π ∑ n = 1 ∞ ( b n sin ⁡ n x sin ⁡ m x ) d x \int_{ - \pi }^\pi {f\left( x \right)\sin mxdx} = \int_{ - \pi }^\pi {\frac{{{a_0}}}{2}\sin mxdx} + \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx\sin mx} \right)} dx} + \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{b_n}\sin nx\sin mx} \right)} dx} ππf(x)sinmxdx=ππ2a0sinmxdx+ππn=1(ancosnxsinmx)dx+ππn=1(bnsinnxsinmx)dx

∵ 三角函数的正交性可得

第一项: ∫ − π π a 0 2 sin ⁡ m x d x = a 0 2 ∫ − π π cos ⁡ 0 x sin ⁡ m x d x = 0 \int_{ - \pi }^\pi {\frac{{{a_0}}}{2}\sin mxdx} = \frac{{{a_0}}}{2}\int_{ - \pi }^\pi {\cos 0x\sin mxdx} = 0 ππ2a0sinmxdx=2a0ππcos0xsinmxdx=0 ,其中, m ≠ 0 m \ne 0 m=0

第二项: ∫ − π π ∑ n = 1 ∞ ( a n cos ⁡ n x sin ⁡ m x ) d x = ∑ n = 1 ∞ a n ∫ − π π cos ⁡ n x sin ⁡ m x d x = ∑ n = 1 ∞ a n ⋅ 0 = 0 \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{a_n}\cos nx\sin mx} \right)} dx} = \sum\limits_{n = 1}^\infty {{a_n}\int_{ - \pi }^\pi {\cos nx\sin mxdx} = } \sum\limits_{n = 1}^\infty {{a_n} \cdot 0 = } 0 ππn=1(ancosnxsinmx)dx=n=1anππcosnxsinmxdx=n=1an0=0

∴等式的右边就只剩下第三项了 ∫ − π π f ( x ) s i n m x d x = ∫ − π π ∑ n = 1 ∞ ( b n s i n n x s i n m x ) d x \int_{ - \pi }^\pi {f\left( x \right)sinmxdx} = \int_{ - \pi }^\pi {\sum\limits_{n = 1}^\infty {\left( {{b_n}sinnxsinmx} \right)} dx} ππf(x)sinmxdx=ππn=1(bnsinnxsinmx)dx

根据三角函数的正交性,当 n ≠ m n \ne m n=m时, b n ∫ − π π sin ⁡ n x sin ⁡ m x d x = 0 {b_n}\int_{ - \pi }^\pi {\sin nx\sin mxdx} = 0 bnππsinnxsinmxdx=0

∴ 等式右边,就剩下当 n = m n = m n=m时的那一项,即

∫ − π π f ( x ) sin ⁡ n x d x = ∫ − π π ( b n sin ⁡ n x s i n n x ) d x = b n ∫ − π π sin ⁡ n x s i n n x d x = b n ⋅ π \int_{ - \pi }^\pi {f\left( x \right)\sin nxdx} = \int_{ - \pi }^\pi {\left( {{b_n}\sin nxsinnx} \right)dx} = {b_n}\int_{ - \pi }^\pi {\sin nxsinnxdx} = {b_n} \cdot \pi ππf(x)sinnxdx=ππ(bnsinnxsinnx)dx=bnππsinnxsinnxdx=bnπ

⇒ b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x \Rightarrow {b_n} = \pmb{\frac{1}{\pi }}\int_{ - \pi }^\pi {f\left( x \right)\sin nxdx} bn=π1ππf(x)sinnxdx 你看 b n b_n bn的系数都是 1 π \pmb{\frac{1}{\pi }} π1,所以把 a 0 = 1 π ∫ − π π f ( x ) d x {a_0} = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( x \right)dx} a0=π1ππf(x)dx ,原式中 a 0 {a_0} a0替换成 a 0 2 \frac{{{a_0}}}{2} 2a0

2、总结

对于周期为 T = 2 π T = 2\pi T=2π周期函数,即 f ( x ) = f ( x + 2 π ) f\left( x \right) = f\left( {x + 2\pi } \right) f(x)=f(x+2π) ,它的傅里叶级数展开形式如下:
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x + ∑ n = 1 ∞ b n sin ⁡ n x f\left( x \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos nx} + \sum\limits_{n = 1}^\infty {{b_n}\sin nx} f(x)=2a0+n=1ancosnx+n=1bnsinnx
其中,
a 0 = 1 π ∫ − π π f ( x ) d x a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x \begin{array}{l} {a_0} = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( x \right)dx} \\\\ {a_n} = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( x \right)\cos nxdx} \\\\ {b_n} = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( x \right)\sin nxdx} \end{array} a0=π1ππf(x)dxan=π1ππf(x)cosnxdxbn=π1ππf(x)sinnxdx

系列学习链接:欢迎大家点赞、收藏、留言讨论。

傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖上都叫我秋博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值