傅里叶级数与傅里叶变换_Part1_三角函数系的正交性
参考链接:
DR_CAN老师的原视频
0、复习Part0的内容
参考链接:傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
三角函数的和差公式如下
sin
(
α
+
β
)
=
sin
(
α
)
cos
(
β
)
+
cos
(
α
)
sin
(
β
)
(
1
)
sin
(
α
−
β
)
=
sin
(
α
)
cos
(
β
)
−
cos
(
α
)
sin
(
β
)
(
2
)
cos
(
α
+
β
)
=
cos
(
α
)
cos
(
β
)
−
sin
(
α
)
sin
(
β
)
(
3
)
cos
(
α
−
β
)
=
cos
(
α
)
cos
(
β
)
+
sin
(
α
)
sin
(
β
)
(
4
)
\begin{array}{l} \sin \left( {\alpha + \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) + \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 1 \right)\\ \sin \left( {\alpha - \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) - \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 2 \right)\\ \cos \left( {\alpha + \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 3 \right)\\ \cos \left( {\alpha - \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) + \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 4 \right) \end{array}
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1)sin(α−β)=sin(α)cos(β)−cos(α)sin(β)(2)cos(α+β)=cos(α)cos(β)−sin(α)sin(β)(3)cos(α−β)=cos(α)cos(β)+sin(α)sin(β)(4)
根据三角函数的和差公式,我们推导出积化和差的公式
(1)+(2)可得
sin
(
α
+
β
)
+
sin
(
α
−
β
)
=
2
sin
(
α
)
cos
(
β
)
⇒
sin
(
α
)
cos
(
β
)
=
1
2
[
sin
(
α
+
β
)
+
sin
(
α
−
β
)
]
\sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right) = 2\sin \left( \alpha \right)\cos \left( \beta \right)\Rightarrow \sin \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right)} \right]
sin(α+β)+sin(α−β)=2sin(α)cos(β)⇒sin(α)cos(β)=21[sin(α+β)+sin(α−β)]
(1)-(2)可得
sin
(
α
+
β
)
−
sin
(
α
−
β
)
=
2
cos
(
α
)
sin
(
β
)
⇒
cos
(
α
)
sin
(
β
)
=
1
2
[
sin
(
α
+
β
)
−
sin
(
α
−
β
)
]
\sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\sin \left( \beta \right)\Rightarrow \cos \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right)} \right]
sin(α+β)−sin(α−β)=2cos(α)sin(β)⇒cos(α)sin(β)=21[sin(α+β)−sin(α−β)]
(3)+(4)可得
cos
(
α
+
β
)
+
cos
(
α
−
β
)
=
2
cos
(
α
)
cos
(
β
)
⇒
cos
(
α
)
cos
(
β
)
=
1
2
[
cos
(
α
+
β
)
+
cos
(
α
−
β
)
]
\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\cos \left( \beta \right) \Rightarrow \cos \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]
cos(α+β)+cos(α−β)=2cos(α)cos(β)⇒cos(α)cos(β)=21[cos(α+β)+cos(α−β)]
(4)- (3)可得
cos
(
α
−
β
)
−
cos
(
α
+
β
)
=
2
sin
(
α
)
sin
(
β
)
⇒
sin
(
α
)
sin
(
β
)
=
1
2
[
cos
(
α
−
β
)
−
cos
(
α
+
β
)
]
\cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right) = 2\sin \left( \alpha \right)\sin \left( \beta \right) \Rightarrow \sin \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right)} \right]
cos(α−β)−cos(α+β)=2sin(α)sin(β)⇒sin(α)sin(β)=21[cos(α−β)−cos(α+β)]
1、什么叫正交
下面介绍一下正交性,正交有另一个说法叫垂直
首先来看一个在二维平面两个垂直的向量
a
⃗
,
b
⃗
\vec a,\vec b
a,b 它们是相互垂直的,夹角
φ
=
9
0
o
\varphi = {90^o}
φ=90o
我们来求
a
⃗
,
b
⃗
\vec a,\vec b
a,b 两个向量的内积,
a
⃗
⋅
b
⃗
=
∣
a
⃗
∣
⋅
∣
b
⃗
∣
⋅
cos
φ
=
∣
a
⃗
∣
⋅
∣
b
⃗
∣
⋅
cos
9
0
o
=
0
\vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos \varphi = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos {90^o} = 0
a⋅b=∣a∣⋅∣
∣b∣
∣⋅cosφ=∣a∣⋅∣
∣b∣
∣⋅cos90o=0
结论:两个向量如果正交的话,它们的内积就等于0
我们把
a
⃗
,
b
⃗
\vec a,\vec b
a,b用向量的方式表达出来,比如
a
⃗
=
(
2
,
1
)
,
b
⃗
=
(
−
1
,
2
)
\vec a = \left( {2,1} \right),\vec b = \left( { - 1,2} \right)
a=(2,1),b=(−1,2)。
a
⃗
⋅
b
⃗
=
(
2
,
1
)
(
−
1
,
2
)
=
2
⋅
(
−
1
)
+
1
⋅
2
=
0
\vec a \cdot \vec b = \left( {2,1} \right)\left( { - 1,2} \right) = 2 \cdot \left( { - 1} \right) + 1 \cdot 2 = 0
a⋅b=(2,1)(−1,2)=2⋅(−1)+1⋅2=0
假设我们 a ⃗ , b ⃗ \vec a,\vec b a,b存在3个元素,比如 a ⃗ = ( 1 , 2 , 5 ) , b ⃗ = ( 1 , 2 , − 1 ) ⇒ a ⃗ ⋅ b ⃗ = 1 × 1 + 2 × 2 + 5 × ( − 1 ) = 0 \vec a = \left( {1,2,5} \right),\vec b = \left( {1,2, - 1} \right) \Rightarrow \vec a \cdot \vec b = 1 \times 1 + 2 \times 2 + 5 \times \left( { - 1} \right) = 0 a=(1,2,5),b=(1,2,−1)⇒a⋅b=1×1+2×2+5×(−1)=0,那么 仍然是正交的。
假设我们
a
⃗
,
b
⃗
\vec a,\vec b
a,b存在n个元素,
a
⃗
=
(
a
1
,
a
2
,
⋯
,
a
n
)
,
b
⃗
=
(
b
1
,
b
2
,
⋯
,
b
n
)
\vec a = \left( {{a_1},{a_2}, \cdots ,{a_n}} \right),\vec b = \left( {{b_1},{b_2}, \cdots ,{b_n}} \right)
a=(a1,a2,⋯,an),b=(b1,b2,⋯,bn) ,如果
a
⃗
⋅
b
⃗
=
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
=
∑
i
=
1
n
a
i
b
i
=
0
\vec a \cdot \vec b = {a_1}{b_1} + {a_2}{b_2} + \cdots + {a_n}{b_n} = \sum\limits_{i = 1}^n {{a_i}{b_i}} = 0
a⋅b=a1b1+a2b2+⋯+anbn=i=1∑naibi=0,那么
a
⃗
,
b
⃗
\vec a,\vec b
a,b也是正交的。
再进一步拓展,如果
a
=
f
(
x
)
,
b
=
g
(
x
)
a = f\left( x \right),b = g\left( x \right)
a=f(x),b=g(x)
这时,如果我们一一对应的把这两函数的相乘👇
然后在一个区间内,比如从
x
0
{x_0}
x0到
x
1
{x_1}
x1把这些乘积加起来👇
由于函数是连续了,相加就变成了积分 👇
a ⋅ b = ∫ x 0 x 1 f ( x ) ⋅ g ( x ) d x a \cdot b = \int_{{x_0}}^{{x_1}} {f\left( x \right) \cdot g\left( x \right)dx} a⋅b=∫x0x1f(x)⋅g(x)dx ,如果当两个函数 a a a和 b b b满足: a ⋅ b = ∫ x 0 x 1 f ( x ) ⋅ g ( x ) d x = 0 a \cdot b = \int_{{x_0}}^{{x_1}} {f\left( x \right) \cdot g\left( x \right)dx} = 0 a⋅b=∫x0x1f(x)⋅g(x)dx=0,那么我们就说两个函数正交。
2、三角函数系
下面介绍 三角函数系(它也是一个集合)
这个1看起来比较突兀,它实际上是实际上
cos
0
x
\cos 0x
cos0x ,它前面还有一个0,对应
sin
0
x
\sin 0x
sin0x,即
{
sin
0
x
=
0
,
cos
0
x
=
1
,
sin
x
,
cos
x
,
sin
2
x
,
cos
2
x
,
⋯
,
sin
n
x
,
cos
n
x
,
⋯
,
⋯
}
\left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\}
{sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,⋯,sinnx,cosnx,⋯,⋯}
这样看来这个集合就是个
sin
n
x
\sin nx
sinnx和
cos
n
x
\cos nx
cosnx的集合,其中
n
=
1234
⋯
n = 1234 \cdots
n=1234⋯
我们说三角函数系,它具有正交性,什么意思呢? 就是如果我们取一个积分,从
−
π
- \pi
−π到
π
\pi
π之间,从三角函数系中任取两个不同的项来相乘。即
{
∫
−
π
π
sin
n
x
⋅
cos
m
x
d
x
=
0
,
n
≠
m
(
1
)
∫
−
π
π
cos
n
x
⋅
cos
m
x
d
x
=
0
,
n
≠
m
(
2
)
∫
−
π
π
sin
n
x
⋅
sin
m
x
d
x
=
0
,
n
≠
m
(
3
)
\left\{ \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{1}} \right)\\\\ \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{2}} \right)\\\\ \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{3}} \right) \end{array} \right.
⎩
⎨
⎧∫−ππsinnx⋅cosmxdx=0,n=m(1)∫−ππcosnx⋅cosmxdx=0,n=m(2)∫−ππsinnx⋅sinmxdx=0,n=m(3)
在后面的Part中,会用到这个结论
下面对上式三个式子一一证明。
根据最开始提到的积化和差的公式,【😏知道我为啥开始Part0要复习三角函数的和差公式 与 和差化积公式了吧? 】
∫
−
π
π
sin
n
x
⋅
cos
m
x
d
x
=
∫
−
π
π
1
2
[
sin
(
n
+
m
)
x
+
sin
(
n
−
m
)
x
]
d
x
=
1
2
[
∫
−
π
π
sin
(
n
+
m
)
x
d
x
+
∫
−
π
π
sin
(
n
−
m
)
x
d
x
]
=
1
2
[
1
n
+
m
[
−
cos
(
n
+
m
)
x
]
∣
−
π
π
+
1
n
−
m
[
−
cos
(
n
−
m
)
x
]
∣
−
π
π
]
\begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\sin \left( {n + m} \right)x + \sin \left( {n - m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\sin \left( {n + m} \right)x} dx + \int_{ - \pi }^\pi {\sin \left( {n - m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left[ {\frac{1}{{n + m}}\left[ { - \cos \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \frac{1}{{n - m}}\left[ { - \cos \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right] \end{array}
∫−ππsinnx⋅cosmxdx=∫−ππ21[sin(n+m)x+sin(n−m)x]dx=21[∫−ππsin(n+m)xdx+∫−ππsin(n−m)xdx]=21[n+m1[−cos(n+m)x]∣−ππ+n−m1[−cos(n−m)x]∣−ππ]
∵ cos x \cos x cosx是个偶函数。
∴ cos ( n + m ) ⋅ π = cos ( n + m ) ⋅ ( − π ) , cos ( n − m ) ⋅ π = cos ( n − m ) ⋅ ( − π ) \cos \left( {n + m} \right) \cdot \pi = \cos \left( {n + m} \right) \cdot \left( { - \pi } \right),\cos \left( {n - m} \right) \cdot \pi = \cos \left( {n - m} \right) \cdot \left( { - \pi } \right) cos(n+m)⋅π=cos(n+m)⋅(−π),cos(n−m)⋅π=cos(n−m)⋅(−π)
∴ 1 2 [ 1 n + m [ − cos ( n + m ) x ] ∣ − π π + 1 n − m [ − cos ( n − m ) x ] ∣ − π π ] = 1 2 [ 0 + 0 ] = 0 \frac{1}{2}\left[ {\frac{1}{{n + m}}\left[ { - \cos \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \frac{1}{{n - m}}\left[ { - \cos \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right] = \frac{1}{2}\left[ {0 + 0} \right] = 0 21[n+m1[−cos(n+m)x]∣−ππ+n−m1[−cos(n−m)x]∣−ππ]=21[0+0]=0
即 ∫ − π π sin n x ⋅ cos m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0,n \ne m ∫−ππsinnx⋅cosmxdx=0,n=m (1)式证毕。
继续证明 (2)式
∫
−
π
π
cos
n
x
⋅
cos
m
x
d
x
=
∫
−
π
π
1
2
[
cos
(
n
+
m
)
x
+
cos
(
n
−
m
)
x
]
d
x
=
1
2
[
∫
−
π
π
cos
(
n
+
m
)
x
d
x
+
∫
−
π
π
cos
(
n
−
m
)
x
d
x
]
=
1
2
{
[
1
n
+
m
sin
(
n
+
m
)
x
]
∣
−
π
π
+
[
1
n
−
m
sin
(
n
−
m
)
x
]
∣
−
π
π
}
\begin{array}{l} \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\cos \left( {n + m} \right)x + \cos \left( {n - m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\cos \left( {n + m} \right)x} dx + \int_{ - \pi }^\pi {\cos \left( {n - m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left\{ {\left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right\} \end{array}
∫−ππcosnx⋅cosmxdx=∫−ππ21[cos(n+m)x+cos(n−m)x]dx=21[∫−ππcos(n+m)xdx+∫−ππcos(n−m)xdx]=21{[n+m1sin(n+m)x]∣−ππ+[n−m1sin(n−m)x]∣−ππ}
∵ sin ( k π ) = sin ( − k π ) = 0 \sin \left( {k\pi } \right) = \sin \left( { - k\pi } \right) = 0 sin(kπ)=sin(−kπ)=0
∴ 1 2 { [ 1 n + m sin ( n + m ) x ] ∣ − π π + [ 1 n − m sin ( n − m ) x ] ∣ − π π } = 1 2 ( 0 + 0 ) = 0 \frac{1}{2}\left\{ {\left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right\} = \frac{1}{2}\left( {0 + 0} \right) = 0 21{[n+m1sin(n+m)x]∣−ππ+[n−m1sin(n−m)x]∣−ππ}=21(0+0)=0
即 ∫ − π π cos n x ⋅ cos m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m ∫−ππcosnx⋅cosmxdx=0,n=m (2) 式证毕。
继续证明(3) 式,【多说一句, (3)式和 (2)式其实差不多】
∫ − π π sin n x ⋅ sin m x d x = ∫ − π π 1 2 [ cos ( n − m ) x − cos ( n + m ) x ] d x = 1 2 [ ∫ − π π cos ( n − m ) x d x − ∫ − π π cos ( n + m ) x d x ] = 1 2 { [ 1 n − m sin ( n − m ) x ] ∣ − π π − [ 1 n + m sin ( n + m ) x ] ∣ − π π } \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\cos \left( {n - m} \right)x - \cos \left( {n + m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\cos \left( {n - m} \right)x} dx - \int_{ - \pi }^\pi {\cos \left( {n + m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left\{ {\left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi - \left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi } \right\} \end{array} ∫−ππsinnx⋅sinmxdx=∫−ππ21[cos(n−m)x−cos(n+m)x]dx=21[∫−ππcos(n−m)xdx−∫−ππcos(n+m)xdx]=21{[n−m1sin(n−m)x]∣−ππ−[n+m1sin(n+m)x]∣−ππ}
∵ sin ( k π ) = sin ( − k π ) = 0 \sin \left( {k\pi } \right) = \sin \left( { - k\pi } \right) = 0 sin(kπ)=sin(−kπ)=0
∴ 1 2 { [ 1 n − m sin ( n − m ) x ] ∣ − π π − [ 1 n + m sin ( n + m ) x ] ∣ − π π } = 1 2 ( 0 − 0 ) = 0 \frac{1}{2}\left\{ {\left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi - \left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi } \right\} = \frac{1}{2}\left( {0 - 0} \right) = 0 21{[n−m1sin(n−m)x]∣−ππ−[n+m1sin(n+m)x]∣−ππ}=21(0−0)=0
即 ∫ − π π sin n x ⋅ sin m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m ∫−ππsinnx⋅sinmxdx=0,n=m (3) 式证毕。
下面看一下当
n
=
m
n = m
n=m时,上述三式的情况。
∫
−
π
π
sin
n
x
⋅
cos
m
x
d
x
=
∫
−
π
π
sin
n
x
⋅
cos
n
x
d
x
=
∫
−
π
π
1
2
sin
2
n
x
d
x
=
1
2
(
−
1
2
n
cos
2
n
x
)
∣
−
π
π
=
0
\int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {\sin nx \cdot \cos nx} dx = \int_{ - \pi }^\pi {\frac{1}{2}\sin 2nx} dx = \frac{1}{2}\left( { - \frac{1}{{2n}}\cos 2nx} \right)\left| {_{ - \pi }^\pi } \right. = 0
∫−ππsinnx⋅cosmxdx=∫−ππsinnx⋅cosnxdx=∫−ππ21sin2nxdx=21(−2n1cos2nx)∣
∣−ππ=0
∫ − π π cos n x ⋅ cos m x d x = ∫ − π π ( cos n x ) 2 d x = ∫ − π π 1 2 ( 1 + cos 2 n x ) d x = 1 2 x ∣ − π π + 1 2 ⋅ ( 1 2 n sin 2 n x ) ∣ − π π = π + 0 = π \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {{{\left( {\cos nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 + \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. + \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi + 0 = \pi ∫−ππcosnx⋅cosmxdx=∫−ππ(cosnx)2dx=∫−ππ21(1+cos2nx)dx=21x∣ ∣−ππ+21⋅(2n1sin2nx)∣ ∣−ππ=π+0=π
∫ − π π sin n x ⋅ sin m x d x = ∫ − π π ( sin n x ) 2 d x = ∫ − π π 1 2 ( 1 − cos 2 n x ) d x = 1 2 x ∣ − π π − 1 2 ⋅ ( 1 2 n sin 2 n x ) ∣ − π π = π − 0 = π \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = \int_{ - \pi }^\pi {{{\left( {\sin nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 - \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. - \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi - 0 = \pi ∫−ππsinnx⋅sinmxdx=∫−ππ(sinnx)2dx=∫−ππ21(1−cos2nx)dx=21x∣ ∣−ππ−21⋅(2n1sin2nx)∣ ∣−ππ=π−0=π
3、总结
更正结论
{
∫
−
π
π
sin
n
x
⋅
cos
m
x
d
x
=
0
(
1
)
∫
−
π
π
cos
n
x
⋅
cos
m
x
d
x
=
0
,
n
≠
m
(
2
)
∫
−
π
π
sin
n
x
⋅
sin
m
x
d
x
=
0
,
n
≠
m
(
3
)
\left\{ \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0{\rm{ }}\left( {\rm{1}} \right)\\\\ \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{2}} \right)\\\\ \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{3}} \right) \end{array} \right.
⎩
⎨
⎧∫−ππsinnx⋅cosmxdx=0(1)∫−ππcosnx⋅cosmxdx=0,n=m(2)∫−ππsinnx⋅sinmxdx=0,n=m(3)
此结论也可以用一句话概括:三角函数系
{ sin 0 x = 0 , cos 0 x = 1 , sin x , cos x , sin 2 x , cos 2 x , ⋯ , sin n x , cos n x , ⋯ , ⋯ } \left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\} {sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,⋯,sinnx,cosnx,⋯,⋯}
任意两个不同的项,都是正交的。
注:当 n = m n = m n=m时, sin n x \sin nx sinnx和 cos n x \cos nx cosnx本质上是两个不同的项,因此 ∫ − π π sin n x ⋅ cos m x d x = 0 \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0 ∫−ππsinnx⋅cosmxdx=0它们是正交的。
系列学习链接:欢迎大家点赞、收藏、留言讨论。
傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数
傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数