傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

本文介绍了傅里叶级数与傅里叶变换的基础,重点探讨了三角函数系的正交性。通过三角函数的和差公式,推导出积化和差的公式,并利用这些公式证明了在-π到π区间内,不同频率的三角函数乘积的积分等于0,即正交性。这一结论对于后续的傅里叶级数和傅里叶变换理论至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

参考链接:
DR_CAN老师的原视频

0、复习Part0的内容

参考链接:傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
三角函数的和差公式如下
sin ⁡ ( α + β ) = sin ⁡ ( α ) cos ⁡ ( β ) + cos ⁡ ( α ) sin ⁡ ( β ) ( 1 ) sin ⁡ ( α − β ) = sin ⁡ ( α ) cos ⁡ ( β ) − cos ⁡ ( α ) sin ⁡ ( β ) ( 2 ) cos ⁡ ( α + β ) = cos ⁡ ( α ) cos ⁡ ( β ) − sin ⁡ ( α ) sin ⁡ ( β ) ( 3 ) cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) ( 4 ) \begin{array}{l} \sin \left( {\alpha + \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) + \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 1 \right)\\ \sin \left( {\alpha - \beta } \right) = \sin \left( \alpha \right)\cos \left( \beta \right) - \cos \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 2 \right)\\ \cos \left( {\alpha + \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) - \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 3 \right)\\ \cos \left( {\alpha - \beta } \right) = \cos \left( \alpha \right)\cos \left( \beta \right) + \sin \left( \alpha \right)\sin \left( \beta \right){\rm{ }}\left( 4 \right) \end{array} sin(α+β)=sin(α)cos(β)+cos(α)sin(β)(1)sin(αβ)=sin(α)cos(β)cos(α)sin(β)(2)cos(α+β)=cos(α)cos(β)sin(α)sin(β)(3)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)(4)

根据三角函数的和差公式,我们推导出积化和差的公式
(1)+(2)可得 sin ⁡ ( α + β ) + sin ⁡ ( α − β ) = 2 sin ⁡ ( α ) cos ⁡ ( β ) ⇒ sin ⁡ ( α ) cos ⁡ ( β ) = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right) = 2\sin \left( \alpha \right)\cos \left( \beta \right)\Rightarrow \sin \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) + \sin \left( {\alpha - \beta } \right)} \right] sin(α+β)+sin(αβ)=2sin(α)cos(β)sin(α)cos(β)=21[sin(α+β)+sin(αβ)]
(1)-(2)可得 sin ⁡ ( α + β ) − sin ⁡ ( α − β ) = 2 cos ⁡ ( α ) sin ⁡ ( β ) ⇒ cos ⁡ ( α ) sin ⁡ ( β ) = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\sin \left( \beta \right)\Rightarrow \cos \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\sin \left( {\alpha + \beta } \right) - \sin \left( {\alpha - \beta } \right)} \right] sin(α+β)sin(αβ)=2cos(α)sin(β)cos(α)sin(β)=21[sin(α+β)sin(αβ)]
(3)+(4)可得 cos ⁡ ( α + β ) + cos ⁡ ( α − β ) = 2 cos ⁡ ( α ) cos ⁡ ( β ) ⇒ cos ⁡ ( α ) cos ⁡ ( β ) = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right) = 2\cos \left( \alpha \right)\cos \left( \beta \right) \Rightarrow \cos \left( \alpha \right)\cos \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right] cos(α+β)+cos(αβ)=2cos(α)cos(β)cos(α)cos(β)=21[cos(α+β)+cos(αβ)]
(4)- (3)可得 cos ⁡ ( α − β ) − cos ⁡ ( α + β ) = 2 sin ⁡ ( α ) sin ⁡ ( β ) ⇒ sin ⁡ ( α ) sin ⁡ ( β ) = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right) = 2\sin \left( \alpha \right)\sin \left( \beta \right) \Rightarrow \sin \left( \alpha \right)\sin \left( \beta \right) = \frac{1}{2}\left[ {\cos \left( {\alpha - \beta } \right) - \cos \left( {\alpha + \beta } \right)} \right] cos(αβ)cos(α+β)=2sin(α)sin(β)sin(α)sin(β)=21[cos(αβ)cos(α+β)]

1、什么叫正交

下面介绍一下正交性,正交有另一个说法叫垂直
首先来看一个在二维平面两个垂直的向量 a ⃗ , b ⃗ \vec a,\vec b a ,b 它们是相互垂直的,夹角 φ = 9 0 o \varphi = {90^o} φ=90o

在这里插入图片描述
我们来求 a ⃗ , b ⃗ \vec a,\vec b a ,b 两个向量的内积, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ φ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ 9 0 o = 0 \vec a \cdot \vec b = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos \varphi = \left| {\vec a} \right| \cdot \left| {\vec b} \right| \cdot \cos {90^o} = 0 a b =a b cosφ=a b cos90o=0
结论:两个向量如果正交的话,它们的内积就等于0
我们把 a ⃗ , b ⃗ \vec a,\vec b a ,b 用向量的方式表达出来,比如 a ⃗ = ( 2 , 1 ) , b ⃗ = ( − 1 , 2 ) \vec a = \left( {2,1} \right),\vec b = \left( { - 1,2} \right) a =(2,1),b =(1,2)

在这里插入图片描述
a ⃗ ⋅ b ⃗ = ( 2 , 1 ) ( − 1 , 2 ) = 2 ⋅ ( − 1 ) + 1 ⋅ 2 = 0 \vec a \cdot \vec b = \left( {2,1} \right)\left( { - 1,2} \right) = 2 \cdot \left( { - 1} \right) + 1 \cdot 2 = 0 a b =(2,1)(1,2)=2(1)+12=0

假设我们 a ⃗ , b ⃗ \vec a,\vec b a ,b 存在3个元素,比如 a ⃗ = ( 1 , 2 , 5 ) , b ⃗ = ( 1 , 2 , − 1 ) ⇒ a ⃗ ⋅ b ⃗ = 1 × 1 + 2 × 2 + 5 × ( − 1 ) = 0 \vec a = \left( {1,2,5} \right),\vec b = \left( {1,2, - 1} \right) \Rightarrow \vec a \cdot \vec b = 1 \times 1 + 2 \times 2 + 5 \times \left( { - 1} \right) = 0 a =(1,2,5),b =(1,2,1)a b =1×1+2×2+5×(1)=0,那么 仍然是正交的。

假设我们 a ⃗ , b ⃗ \vec a,\vec b a ,b 存在n个元素, a ⃗ = ( a 1 , a 2 , ⋯   , a n ) , b ⃗ = ( b 1 , b 2 , ⋯   , b n ) \vec a = \left( {{a_1},{a_2}, \cdots ,{a_n}} \right),\vec b = \left( {{b_1},{b_2}, \cdots ,{b_n}} \right) a =(a1,a2,,an),b =(b1,b2,,bn) ,如果 a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + ⋯ + a n b n = ∑ i = 1 n a i b i = 0 \vec a \cdot \vec b = {a_1}{b_1} + {a_2}{b_2} + \cdots + {a_n}{b_n} = \sum\limits_{i = 1}^n {{a_i}{b_i}} = 0 a b =a1b1+a2b2++anbn=i=1naibi=0,那么 a ⃗ , b ⃗ \vec a,\vec b a ,b 也是正交的。
再进一步拓展,如果 a = f ( x ) , b = g ( x ) a = f\left( x \right),b = g\left( x \right) a=f(x),b=g(x)

在这里插入图片描述
这时,如果我们一一对应的把这两函数的相乘👇
在这里插入图片描述
然后在一个区间内,比如从 x 0 {x_0} x0 x 1 {x_1} x1把这些乘积加起来👇
在这里插入图片描述
由于函数是连续了,相加就变成了积分 👇

a ⋅ b = ∫ x 0 x 1 f ( x ) ⋅ g ( x ) d x a \cdot b = \int_{{x_0}}^{{x_1}} {f\left( x \right) \cdot g\left( x \right)dx} ab=x0x1f(x)g(x)dx ,如果当两个函数 a a a b b b满足: a ⋅ b = ∫ x 0 x 1 f ( x ) ⋅ g ( x ) d x = 0 a \cdot b = \int_{{x_0}}^{{x_1}} {f\left( x \right) \cdot g\left( x \right)dx} = 0 ab=x0x1f(x)g(x)dx=0,那么我们就说两个函数正交

2、三角函数系

下面介绍 三角函数系(它也是一个集合)
这个1看起来比较突兀,它实际上是实际上 cos ⁡ 0 x \cos 0x cos0x ,它前面还有一个0,对应 sin ⁡ 0 x \sin 0x sin0x,即
{ sin ⁡ 0 x = 0 , cos ⁡ 0 x = 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , ⋯   , sin ⁡ n x , cos ⁡ n x , ⋯   , ⋯ } \left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\} {sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,,}
这样看来这个集合就是个 sin ⁡ n x \sin nx sinnx cos ⁡ n x \cos nx cosnx的集合,其中 n = 1234 ⋯ n = 1234 \cdots n=1234
我们说三角函数系,它具有正交性,什么意思呢? 就是如果我们取一个积分,从 − π - \pi π π \pi π之间,从三角函数系中任取两个不同的项来相乘。即
{ ∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m ( 1 ) ∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m ( 2 ) ∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = 0 , n ≠ m ( 3 ) \left\{ \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{1}} \right)\\\\ \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{2}} \right)\\\\ \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{3}} \right) \end{array} \right. ππsinnxcosmxdx=0,n=m(1)ππcosnxcosmxdx=0,n=m(2)ππsinnxsinmxdx=0,n=m(3)
在后面的Part中,会用到这个结论
下面对上式三个式子一一证明。
根据最开始提到的积化和差的公式,【😏知道我为啥开始Part0要复习三角函数的和差公式 与 和差化积公式了吧? 】
∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π 1 2 [ sin ⁡ ( n + m ) x + sin ⁡ ( n − m ) x ] d x = 1 2 [ ∫ − π π sin ⁡ ( n + m ) x d x + ∫ − π π sin ⁡ ( n − m ) x d x ] = 1 2 [ 1 n + m [ − cos ⁡ ( n + m ) x ] ∣ − π π + 1 n − m [ − cos ⁡ ( n − m ) x ] ∣ − π π ] \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\sin \left( {n + m} \right)x + \sin \left( {n - m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\sin \left( {n + m} \right)x} dx + \int_{ - \pi }^\pi {\sin \left( {n - m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left[ {\frac{1}{{n + m}}\left[ { - \cos \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \frac{1}{{n - m}}\left[ { - \cos \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right] \end{array} ππsinnxcosmxdx=ππ21[sin(n+m)x+sin(nm)x]dx=21[ππsin(n+m)xdx+ππsin(nm)xdx]=21[n+m1[cos(n+m)x]ππ+nm1[cos(nm)x]ππ]

cos ⁡ x \cos x cosx是个偶函数。

cos ⁡ ( n + m ) ⋅ π = cos ⁡ ( n + m ) ⋅ ( − π ) , cos ⁡ ( n − m ) ⋅ π = cos ⁡ ( n − m ) ⋅ ( − π ) \cos \left( {n + m} \right) \cdot \pi = \cos \left( {n + m} \right) \cdot \left( { - \pi } \right),\cos \left( {n - m} \right) \cdot \pi = \cos \left( {n - m} \right) \cdot \left( { - \pi } \right) cos(n+m)π=cos(n+m)(π),cos(nm)π=cos(nm)(π)

1 2 [ 1 n + m [ − cos ⁡ ( n + m ) x ] ∣ − π π + 1 n − m [ − cos ⁡ ( n − m ) x ] ∣ − π π ] = 1 2 [ 0 + 0 ] = 0 \frac{1}{2}\left[ {\frac{1}{{n + m}}\left[ { - \cos \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \frac{1}{{n - m}}\left[ { - \cos \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right] = \frac{1}{2}\left[ {0 + 0} \right] = 0 21[n+m1[cos(n+m)x]ππ+nm1[cos(nm)x]ππ]=21[0+0]=0

∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0,n \ne m ππsinnxcosmxdx=0,n=m (1)式证毕。

继续证明 (2)式
∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π 1 2 [ cos ⁡ ( n + m ) x + cos ⁡ ( n − m ) x ] d x = 1 2 [ ∫ − π π cos ⁡ ( n + m ) x d x + ∫ − π π cos ⁡ ( n − m ) x d x ] = 1 2 { [ 1 n + m sin ⁡ ( n + m ) x ] ∣ − π π + [ 1 n − m sin ⁡ ( n − m ) x ] ∣ − π π } \begin{array}{l} \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\cos \left( {n + m} \right)x + \cos \left( {n - m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\cos \left( {n + m} \right)x} dx + \int_{ - \pi }^\pi {\cos \left( {n - m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left\{ {\left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right\} \end{array} ππcosnxcosmxdx=ππ21[cos(n+m)x+cos(nm)x]dx=21[ππcos(n+m)xdx+ππcos(nm)xdx]=21{[n+m1sin(n+m)x]ππ+[nm1sin(nm)x]ππ}

sin ⁡ ( k π ) = sin ⁡ ( − k π ) = 0 \sin \left( {k\pi } \right) = \sin \left( { - k\pi } \right) = 0 sin()=sin()=0

1 2 { [ 1 n + m sin ⁡ ( n + m ) x ] ∣ − π π + [ 1 n − m sin ⁡ ( n − m ) x ] ∣ − π π } = 1 2 ( 0 + 0 ) = 0 \frac{1}{2}\left\{ {\left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi + \left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi } \right\} = \frac{1}{2}\left( {0 + 0} \right) = 0 21{[n+m1sin(n+m)x]ππ+[nm1sin(nm)x]ππ}=21(0+0)=0

∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m ππcosnxcosmxdx=0,n=m (2) 式证毕。

继续证明(3) 式,【多说一句, (3)式和 (2)式其实差不多】

∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = ∫ − π π 1 2 [ cos ⁡ ( n − m ) x − cos ⁡ ( n + m ) x ] d x = 1 2 [ ∫ − π π cos ⁡ ( n − m ) x d x − ∫ − π π cos ⁡ ( n + m ) x d x ] = 1 2 { [ 1 n − m sin ⁡ ( n − m ) x ] ∣ − π π − [ 1 n + m sin ⁡ ( n + m ) x ] ∣ − π π } \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx\\\\ = \int_{ - \pi }^\pi {\frac{1}{2}\left[ {\cos \left( {n - m} \right)x - \cos \left( {n + m} \right)x} \right]} dx\\\\ = \frac{1}{2}\left[ {\int_{ - \pi }^\pi {\cos \left( {n - m} \right)x} dx - \int_{ - \pi }^\pi {\cos \left( {n + m} \right)x} dx} \right]\\\\ = \frac{1}{2}\left\{ {\left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi - \left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi } \right\} \end{array} ππsinnxsinmxdx=ππ21[cos(nm)xcos(n+m)x]dx=21[ππcos(nm)xdxππcos(n+m)xdx]=21{[nm1sin(nm)x]ππ[n+m1sin(n+m)x]ππ}

sin ⁡ ( k π ) = sin ⁡ ( − k π ) = 0 \sin \left( {k\pi } \right) = \sin \left( { - k\pi } \right) = 0 sin()=sin()=0

1 2 { [ 1 n − m sin ⁡ ( n − m ) x ] ∣ − π π − [ 1 n + m sin ⁡ ( n + m ) x ] ∣ − π π } = 1 2 ( 0 − 0 ) = 0 \frac{1}{2}\left\{ {\left[ {\frac{1}{{n - m}}\sin \left( {n - m} \right)x} \right]|_{ - \pi }^\pi - \left[ {\frac{1}{{n + m}}\sin \left( {n + m} \right)x} \right]|_{ - \pi }^\pi } \right\} = \frac{1}{2}\left( {0 - 0} \right) = 0 21{[nm1sin(nm)x]ππ[n+m1sin(n+m)x]ππ}=21(00)=0

∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = 0 , n ≠ m \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m ππsinnxsinmxdx=0,n=m (3) 式证毕。

下面看一下当 n = m n = m n=m时,上述三式的情况。
∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π sin ⁡ n x ⋅ cos ⁡ n x d x = ∫ − π π 1 2 sin ⁡ 2 n x d x = 1 2 ( − 1 2 n cos ⁡ 2 n x ) ∣ − π π = 0 \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {\sin nx \cdot \cos nx} dx = \int_{ - \pi }^\pi {\frac{1}{2}\sin 2nx} dx = \frac{1}{2}\left( { - \frac{1}{{2n}}\cos 2nx} \right)\left| {_{ - \pi }^\pi } \right. = 0 ππsinnxcosmxdx=ππsinnxcosnxdx=ππ21sin2nxdx=21(2n1cos2nx) ππ=0

∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = ∫ − π π ( cos ⁡ n x ) 2 d x = ∫ − π π 1 2 ( 1 + cos ⁡ 2 n x ) d x = 1 2 x ∣ − π π + 1 2 ⋅ ( 1 2 n sin ⁡ 2 n x ) ∣ − π π = π + 0 = π \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = \int_{ - \pi }^\pi {{{\left( {\cos nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 + \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. + \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi + 0 = \pi ππcosnxcosmxdx=ππ(cosnx)2dx=ππ21(1+cos2nx)dx=21x ππ+21(2n1sin2nx) ππ=π+0=π

∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = ∫ − π π ( sin ⁡ n x ) 2 d x = ∫ − π π 1 2 ( 1 − cos ⁡ 2 n x ) d x = 1 2 x ∣ − π π − 1 2 ⋅ ( 1 2 n sin ⁡ 2 n x ) ∣ − π π = π − 0 = π \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = \int_{ - \pi }^\pi {{{\left( {\sin nx} \right)}^2}} dx = \int_{ - \pi }^\pi {\frac{1}{2}} \left( {1 - \cos 2nx} \right)dx = \frac{1}{2}x\left| {_{ - \pi }^\pi } \right. - \frac{1}{2} \cdot \left( {\frac{1}{{2n}}\sin 2nx} \right)\left| {_{ - \pi }^\pi } \right. = \pi - 0 = \pi ππsinnxsinmxdx=ππ(sinnx)2dx=ππ21(1cos2nx)dx=21x ππ21(2n1sin2nx) ππ=π0=π

3、总结

更正结论
{ ∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 ( 1 ) ∫ − π π cos ⁡ n x ⋅ cos ⁡ m x d x = 0 , n ≠ m ( 2 ) ∫ − π π sin ⁡ n x ⋅ sin ⁡ m x d x = 0 , n ≠ m ( 3 ) \left\{ \begin{array}{l} \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0{\rm{ }}\left( {\rm{1}} \right)\\\\ \int_{ - \pi }^\pi {\cos nx \cdot \cos mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{2}} \right)\\\\ \int_{ - \pi }^\pi {\sin nx \cdot \sin mx} dx = 0,n \ne m{\rm{ }}\left( {\rm{3}} \right) \end{array} \right. ππsinnxcosmxdx=0(1)ππcosnxcosmxdx=0,n=m(2)ππsinnxsinmxdx=0,n=m(3)

此结论也可以用一句话概括:三角函数系

{ sin ⁡ 0 x = 0 , cos ⁡ 0 x = 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , ⋯   , sin ⁡ n x , cos ⁡ n x , ⋯   , ⋯ } \left\{ {\sin 0x = 0,\cos 0x = 1,\sin x,\cos x,\sin 2x,\cos 2x, \cdots ,\sin nx,\cos nx, \cdots , \cdots } \right\} {sin0x=0,cos0x=1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,,}

任意两个不同的项,都是正交的。

注:当 n = m n = m n=m时, sin ⁡ n x \sin nx sinnx cos ⁡ n x \cos nx cosnx本质上是两个不同的项,因此 ∫ − π π sin ⁡ n x ⋅ cos ⁡ m x d x = 0 \int_{ - \pi }^\pi {\sin nx \cdot \cos mx} dx = 0 ππsinnxcosmxdx=0它们是正交的。

系列学习链接:欢迎大家点赞、收藏、留言讨论。

傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖上都叫我秋博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值