傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

参考链接:
DR_CAN老师的原视频

0、复习Part3的内容

参考链接: 傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

对于周期为 T T T,即 f ( t ) = f ( t + T ) f\left( t \right) = f\left( {t + T} \right) f(t)=f(t+T)的函数,他的傅里叶级数展开形式如下:

f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n ω t + ∑ n = 1 ∞ b n sin ⁡ n ω t f\left( t \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\cos n\omega t} + \sum\limits_{n = 1}^\infty {{b_n}\sin n\omega t} f(t)=2a0+n=1ancost+n=1bnsint

a 0 = 2 T ∫ 0 T f ( t ) d t a n = 2 T ∫ 0 T f ( t ) cos ⁡ n ω t d t b n = 2 T ∫ 0 T f ( t ) sin ⁡ n ω t d t \begin{array}{l} {a_0} = \frac{2}{T}\int_0^T {f\left( t \right)dt} \\\\ {a_n} = \frac{2}{T}\int_0^T {f\left( t \right)\cos n\omega tdt} \\\\ {b_n} = \frac{2}{T}\int_0^T {f\left( t \right)\sin n\omega tdt} \end{array} a0=T20Tf(t)dtan=T20Tf(t)costdtbn=T20Tf(t)sintdt

【 在工程当中,由于时间是 t ≥ 0 t \ge 0 t0的,所以 t t t是从 0 0 0开始的,假设周期为 T = 2 L T=2L T=2L ω ≜ π L = 2 π 2 L = 2 π T \omega \triangleq \frac{\pi }{L} = \frac{{2\pi }}{{2L}} = \frac{{2\pi }}{T} ωLπ=2L2π=T2π ,这个 ω \omega ω本质上就是角频率。】

1、傅里叶级数的复数形式推导

要推导傅里叶级数的复数形式,需要用到欧拉公式: e i θ = cos ⁡ θ + i sin ⁡ θ {e^{i\theta }} = \cos \theta + i\sin \theta eiθ=cosθ+isinθ ,其中, i = − 1 i = \sqrt { - 1} i=1

欧拉公式的证明参考: 傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

{ e i θ = cos ⁡ θ + i sin ⁡ θ e − i θ = cos ⁡ ( − θ ) + i sin ⁡ ( − θ ) = cos ⁡ θ − i sin ⁡ θ { cos ⁡ θ = 1 2 ( e i θ + e − i θ ) sin ⁡ θ = − 1 2 i ( e i θ − e − i θ ) \begin{array}{l} \left\{ \begin{array}{l} {e^{i\theta }} = \cos \theta + i\sin \theta \\\\ {e^{ - i\theta }} = \cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right) = \cos \theta - i\sin \theta \end{array} \right.\\\\ \left\{ \begin{array}{l} \cos \theta = \frac{1}{2}\left( {{e^{i\theta }} + {e^{ - i\theta }}} \right)\\\\ \sin \theta = - \frac{1}{2}i\left( {{e^{i\theta }} - {e^{ - i\theta }}} \right) \end{array} \right. \end{array} eiθ=cosθ+isinθeiθ=cos(θ)+isin(θ)=cosθisinθ cosθ=21(eiθ+eiθ)sinθ=21i(eiθeiθ)

将上述结论,带入周期为 T T T的傅里叶级数的展开形式当中。
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n 1 2 ( e i n ω t + e − i n ω t ) − 1 2 b n i ( e i n ω t − e − i n ω t ) = a 0 2 + ∑ n = 1 ∞ a n − b n i 2 e i n ω t + a n + b n i 2 e − i n ω t = a 0 2 + ∑ n = 1 ∞ a n − b n i 2 e i n ω t + ∑ n = 1 ∞ a n + b n i 2 e − i n ω t \begin{array}{l} f\left( t \right) = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {{a_n}\frac{1}{2}\left( {{e^{in\omega t}} + {e^{ - in\omega t}}} \right) - \frac{1}{2}{b_n}i\left( {{e^{in\omega t}} - {e^{ - in\omega t}}} \right)} \\\\ = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {\frac{{{a_n} - {b_n}i}}{2}{e^{in\omega t}} + \frac{{{a_n} + {b_n}i}}{2}{e^{ - in\omega t}}} \\\\ = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {\frac{{{a_n} - {b_n}i}}{2}{e^{in\omega t}}} + \sum\limits_{n = 1}^\infty {\frac{{{a_n} + {b_n}i}}{2}{e^{ - in\omega t}}} \end{array} f(t)=2a0+n=1an21(einωt+einωt)21bni(einωteinωt)=2a0+n=12anbnieinωt+2an+bnieinωt=2a0+n=12anbnieinωt+n=12an+bnieinωt

这时候我们单独来看 第三项 ∑ n = 1 ∞ a n + b n i 2 e − i n ω t \sum\limits_{n = 1}^\infty {\frac{{{a_n} + {b_n}i}}{2}{e^{ - in\omega t}}} n=12an+bnieinωt, 我们用 − n -n n来替换 n n n
∑ n = 1 ∞ a n + b n i 2 e − i n ω t → ∑ n = − ∞ − 1 a − n + b − n i 2 e i n ω t \sum\limits_{n = 1}^\infty {\frac{{{a_n} + {b_n}i}}{2}{e^{ - in\omega t}}} \to \sum\limits_{n = - \infty }^{ - 1} {\frac{{{a_{ - n}} + {b_{ - n}}i}}{2}{e^{in\omega t}}} n=12an+bnieinωtn=12an+bnieinωt

原式就变为

= a 0 2 + ∑ n = 1 ∞ a n − b n i 2 e i n ω t + ∑ n = − ∞ − 1 a − n + b − n i 2 e i n ω t = ∑ n = 0 0 a 0 2 e i 0 ω t + ∑ n = 1 ∞ a n − b n i 2 e i n ω t + ∑ n = − ∞ − 1 a − n + b − n i 2 e i n ω t \begin{array}{l} = \frac{{{a_0}}}{2} + \sum\limits_{n = 1}^\infty {\frac{{{a_n} - {b_n}i}}{2}{e^{in\omega t}}} + \sum\limits_{n = - \infty }^{ - 1} {\frac{{{a_{ - n}} + {b_{ - n}}i}}{2}{e^{in\omega t}}} \\\\ = \sum\limits_{n = 0}^0 {\frac{{{a_0}}}{2}{e^{i0\omega t}}} + \sum\limits_{n = 1}^\infty {\frac{{{a_n} - {b_n}i}}{2}{e^{in\omega t}}} + \sum\limits_{n = - \infty }^{ - 1} {\frac{{{a_{ - n}} + {b_{ - n}}i}}{2}{e^{in\omega t}}} \end{array} =2a0+n=12anbnieinωt+n=12an+bnieinωt=n=002a0ei0ωt+n=12anbnieinωt+n=12an+bnieinωt

从上式我们发现, n n n − ∞ - \infty − 1 - 1 1,再到 0 0 0 ,再是 1 1 1 ∞ \infty ,也就是从 − ∞ - \infty 到 打通关了 ∞ \infty ,所以我们可以把原式写成

f ( t ) ≜ ∑ n = − ∞ ∞ c n e i n ω t f\left( t \right) \triangleq \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in\omega t}}} f(t)n=cneinωt

上式就是傅里叶级数,复数的表达形式
下面我们来看一下系数,其中

c n = a 0 2 , n = 0 c n = a n − b n i 2 , n = 1 , 2 , 3 , 4 , ⋯   , ∞ c n = a − n + b − n i 2 , n = − 1 , − 2 , − 3 , − 4 , ⋯   , − ∞ \begin{array}{l} {c_n} = \frac{{{a_0}}}{2},n = 0\\\\ {c_n} = \frac{{{a_n} - {b_n}i}}{2},n = 1,2,3,4, \cdots ,\infty \\\\ {c_n} = \frac{{{a_{ - n}} + {b_{ - n}}i}}{2},n = - 1, - 2, - 3, - 4, \cdots , - \infty \end{array} cn=2a0,n=0cn=2anbni,n=1,2,3,4,,cn=2an+bni,n=1,2,3,4,,

n = 0 n=0 n=0

c n = a 0 2 = 1 2 ⋅ 2 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) d t = 1 T ∫ 0 T f ( t ) e − i n 0 t d t {c_n} = \frac{{{a_0}}}{2} = \frac{1}{2} \cdot \frac{2}{T}\int_0^T {f\left( t \right)dt} = \frac{1}{T}\int_0^T {f\left( t \right)dt}=\frac{1}{T}\int_0^T {f\left( t \right){e^{ - in0t}}dt} cn=2a0=21T20Tf(t)dt=T10Tf(t)dt=T10Tf(t)ein0tdt

n = 1 , 2 , 3 , 4 , ⋯   , ∞ n = 1,2,3,4, \cdots ,\infty n=1,2,3,4,,

这里会用到本文开始复习的Part3的内容
c n = a n − b n i 2 = 1 2 ⋅ 2 T ∫ 0 T f ( t ) cos ⁡ n ω t d t − 1 2 ⋅ i ⋅ 2 T ∫ 0 T f ( t ) sin ⁡ n ω t d t = 1 T ∫ 0 T f ( t ) ( cos ⁡ n ω t − i sin ⁡ n ω t ) d t = 1 T ∫ 0 T f ( t ) [ cos ⁡ ( − n ω t ) + i sin ⁡ ( − n ω t ) ] d t = 1 T ∫ 0 T f ( t ) e − i n ω t d t \begin{array}{l} {c_n} = \frac{{{a_n} - {b_n}i}}{2} = \frac{1}{2} \cdot \frac{2}{T}\int_0^T {f\left( t \right)\cos n\omega tdt} - \frac{1}{2} \cdot i \cdot \frac{2}{T}\int_0^T {f\left( t \right)\sin n\omega tdt} \\\\ = \frac{1}{T}\int_0^T {f\left( t \right)\left( {\cos n\omega t - i\sin n\omega t} \right)dt} \\\\ = \frac{1}{T}\int_0^T {f\left( t \right)\left[ {\cos \left( { - n\omega t} \right) + i\sin \left( { - n\omega t} \right)} \right]dt} \\\\ = \frac{1}{T}\int_0^T {f\left( t \right){e^{ - in\omega t}}dt} \end{array} cn=2anbni=21T20Tf(t)costdt21iT20Tf(t)sintdt=T10Tf(t)(costisint)dt=T10Tf(t)[cos(t)+isin(t)]dt=T10Tf(t)einωtdt

n = − 1 , − 2 , − 3 , − 4 , ⋯   , − ∞ n = -1,-2,-3,-4, \cdots ,-\infty n=1,2,3,4,,

这里会用到本文开始复习的Part3的内容
c n = a − n + b − n i 2 = 1 2 ⋅ 2 T ∫ 0 T f ( t ) cos ⁡ ( − n ω t ) d t + 1 2 ⋅ i ⋅ 2 T ∫ 0 T f ( t ) sin ⁡ ( − n ω t ) d t = 1 T ∫ 0 T f ( t ) [ cos ⁡ ( − n ω t ) + i sin ⁡ ( − n ω t ) ] d t = 1 T ∫ 0 T f ( t ) e − i n ω t d t \begin{array}{l} {c_n} = \frac{{{a_{ - n}} + {b_{ - n}}i}}{2} = \frac{1}{2} \cdot \frac{2}{T}\int_0^T {f\left( t \right)\cos \left( { - n\omega t} \right)dt} + \frac{1}{2} \cdot i \cdot \frac{2}{T}\int_0^T {f\left( t \right)\sin \left( { - n\omega t} \right)dt} \\\\ = \frac{1}{T}\int_0^T {f\left( t \right)\left[ {\cos \left( { - n\omega t} \right) + i\sin \left( { - n\omega t} \right)} \right]dt} \\\\ = \frac{1}{T}\int_0^T {f\left( t \right){e^{ - in\omega t}}dt} \end{array} cn=2an+bni=21T20Tf(t)cos(t)dt+21iT20Tf(t)sin(t)dt=T10Tf(t)[cos(t)+isin(t)]dt=T10Tf(t)einωtdt

我们惊奇的发现,这 c n {c_n} cn在n的三种情况下,它的复数形式的表达式是一样的。
因此,我们可以总结:

对于周期为 T T T,即 f ( t ) = f ( t + T ) f\left( t \right) = f\left( {t + T} \right) f(t)=f(t+T)的函数,它的傅里叶级数的复数展开形式如下:

f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t f\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in\omega t}}} f(t)=n=cneinωt, 其中, c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t {c_n} = \frac{1}{T}\int_0^T {f\left( t \right){e^{ - in\omega t}}dt} cn=T10Tf(t)einωtdt

This is fantastic!

系列学习链接:欢迎大家点赞、收藏、留言讨论。

傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江湖上都叫我秋博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值